Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innovation für die Mikromaterialbearbeitung auf der Hannover-Messe - Mikroschneiden mit Laserlicht

30.01.2002


Mittels diodengepumptem Festkörperlaser "GATOR UV" geschnittene Strukturen in Silizium-Wafern (polierte Frontseite)
(Foto: Fraunhofer IWS Dresden)


Teil eines Silizium-Wafers mit lasergeschnittenen Strukturen
Foto: Fraunhofer IWS Dresden


Auf der Hannover-Messe Industrie 15.04 - 20.04.2002 zeigen wir neueste Ergebnisse aus der Mikromaterialbearbeitung auf dem Gemeinschaftsstand "Laser Technology" in Halle 6 / Stand D 18.

Besuchen Sie uns auf der Hannover-Messe Industrie 2002 auf dem Gemeinschaftsstand "Laser Technology" in Halle 6 Stand D18.

In verschiedensten Zweigen der Mikrosystemtechnik, Medizintechnik, Biotechnologie und Mikroelektronik werden feinste Schnitte, Strukturierungen und Bohrungen in Materialien aus verschiedenen metallischen Werkstoffen, Keramikscheiben, Polymeren oder Silizium-Wafern benötigt, um Mikrostrukturen zu erzeugen. Anwendungsbeispiele sind das Bohren von Einspritzdüsen für Verbrennungsmotoren, das Schneiden von Stents für die medizinische Behandlung von arteriosklerotischen Krankheitsbildern, das Bohren von Düsenplatten für die Drucktechnik, das Vereinzeln von Wafern oder die Herstellung von Strahlteilern für Röntgenstrahlung. Stand der Technik beim Mikroschneiden ist der Einsatz diodengepumpter Nd:YAG-Laser mit Güteschaltung, die mit der Grundwellenlänge oder Frequenzverdopplung arbeiten. Obwohl dabei schon mit kurzen Laserimpulsen bei Pulsdauern bis zu 15 ns gearbeitet wird, um eine thermische Beeinflussung zu reduzieren, sind Aufschmelzerscheinungen und Schmelzablagerungen unvermeidlich.

Eine weitere Verminderung dieser Effekte kann durch den Einsatz von Lasern im UV-Wellenlängenbereich erreicht werden. Das Ablationsplasma absorbiert kürzere Wellenlängen weniger stark. Die Folge davon ist die Reduzierung der Plasmatemperatur. Dadurch gelingt es, den thermischen Einfluss auf die Schnittfuge bzw. Bohrlochwand zu vermindern, was sich in einer erhöhten Bearbeitungsqualität niederschlägt. Darüber hinaus lassen sich Laserstrahlen der kürzeren UV-Wellenlängen wesentlich besser fokussieren, was zu geringeren Schnittfugenbreiten führt, die dann eine Herstellung filigranerer Strukturen ermöglichen.

Für dieses Aufgabengebiet hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS in Dresden eine Mikrostrukturierungsanlage zum Schneiden, Bohren und Strukturieren realisiert. Herzstück dieser Anlage sind zwei diodengepumpte Festkörperlaser mit Frequenzverdopplung und Frequenzverdreifachung. Bei diesen Geräten handelt es sich um stabile, wartungsarme Industrielaser des Unternehmens Lambda Physik AG vom Typ "GATOR" mit folgenden Strahlparametern:

  • Wellenlänge: 355 nm und 532 nm
  • Repetitionsrate: 10 kHz
  • Pulsdauer: 15 ns
  • Mittlere Leistung: 3 W (355nm) und 13,5 W (532 nm)
  • Strahlqualität: nahe TEM00

Die Anlage ist mit einem UV-Scanner mit Planfeldoptik ausgerüstet, mit dem ein Arbeitsfeld von 100 x 100 mm2 zur Verfügung steht. Um höchste Strahlqualitäten realisieren zu können, wird der Laserstrahl nicht durch Zu- und Abschalten des Lasers, sondern mittels eines galvanisch angesteuerten Shutters geschalten, während der Laser im thermischen Gleichgewicht kontinuierlich arbeitet. Die geringe, kompakte Bauweise diodengepumpter Festkörperlaser erlauben Anlagenabmessungen, die den Aufbau eines Tischgerätes ermöglichen.

Mit der beschriebenen Anlage wurden z.B. Laserschneidarbeiten an Siliziumwafern durchgeführt. Die hohe Strahlqualität ermöglicht Schnittfugenbreiten von 16 µm bei Wafer-Dicken von 220 µm. Der Schneidprozess kann als Sublimationsschneiden bezeichnet werden, da es bei Silizium kaum zum Austrieb von Schmelze kommt. Auftretende Ablagerungen von Siliziumoxid können leicht im Ultraschallbad entfernt werden. Die Abbildungen X und Y zeigen Strukturen, die aus Silizium ausgeschnitten wurden.

Das Dresdner Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS betreibt anwendungsorientierte Forschung und Entwicklung auf den Gebieten Lasertechnik und Oberflächentechnik. Ziel ist es, den Kunden des IWS Problemlösungen anbieten zu können und sie bei der industriellen Einführung zu unterstützen.

Dr. Ralf Jaeckel | idw
Weitere Informationen:
http://www.iws.fraunhofer.de/

Weitere Berichte zu: Mikromaterialbearbeitung Silizium

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht COMPAMED 2017 zeigte neue Fertigungsverfahren für individualisierte Produkte
06.12.2017 | IVAM Fachverband für Mikrotechnik

nachricht Schlanke Motorsteuergeräte schaffen Platz im Schaltschrank erweitert RiLine Compact - Portfolio
30.11.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

11.12.2017 | Verfahrenstechnologie

Jenaer Wissenschaftler für Prostatakrebs-Forschung ausgezeichnet

11.12.2017 | Förderungen Preise

Der Buche in die Gene schauen - Vollständiges Genom der Rotbuche entschlüsselt

11.12.2017 | Biowissenschaften Chemie