Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selektives Lasersintern von Keramik

20.09.2000


Verfahrensablauf bei der

Porzellanherstellung durch Lasersintern


Wechselwirkungen Laserstrahl -

Porzellanpulver


... mehr zu:
»Laserstrahl
Die Professur für Ingenieurkeramik des Institutes für Nichtmetallische Werkstoffe der TU Clausthal präsentiert auf der internationalen Fachmesse Ceramitec vom 17. bis 21. Oktober 2000 in
München Ergebnisse aktueller Forschungsvorhaben zum selektiven Lasersintern von Keramik.

Die Professur für Ingenieurkeramik (Prof. Dr.-Ing. Jürgen G. Heinrich) des Institutes für Nichtmetallische Werkstoffe der TU Clausthal präsentiert auf der internationalen Fachmesse Ceramitec vom 17. bis 21. Oktober 2000 in München Ergebnisse aktueller Forschungsvorhaben zum selektiven Lasersintern von Keramik.

Die Herstellung keramischer Prototypen ist bislang mit viel Handarbeit verbunden und daher zeitaufwendig. Das neue Verfahren, gegenwärtig in der Entwicklungsphase befindlich, wird den Aufwand der Modell- und Formenherstellung drastisch verringern.

Für dieses Ziel werden zunächst mit dem 3D-CAD-System Unigraphics Modelle im Rechner erstellt, in Schichten geschnitten und als NC-Datensatz exportiert. Dafür finden Standard-Programm-Module Anwendung. In den Lasersinteranlagen werden diese Datensätze von einem eigens programmierten Post-Prozessor weiterverarbeitet und zum sukzessiven Aufbau von keramischen Prototypen verwendet.

Das angestrebte Verfahren hat mit den meisten Lösungsansätzen des Rapid Prototyping den schichtweisen Aufbau des Bauteils gemeinsam. Dazu wird das Pulver in einer Lage von wenigen Zehntelmillimetern Dicke auf einen Objekttisch aufgebracht. Anschließend wird die Schichtinformation des herzustellenden Bauteils mit dem Laser selektiv auf der Pulverschicht abgebildet. Der Tisch fährt um eine Schicht-dicke nach unten, eine weitere Pulverlage wird aufgetragen und der Laserprozess beginnt von neuem.

Nach Abbildung aller Schichten kann der Prototyp aus dem Prozessraum herausgenommen und gegebenenfalls weiteren Behandlungsschritten, dem finishing, unterzogen werden. Im Fall der Porzellanherstellung wird es sich dabei um eine Nachsinterung zur weiteren Verdichtung und Verfestigung des Scherbens sowie um die Glasierung des Bauteils handeln.

Im Rahmen der erwähnten Arbeiten sollen nicht nur technologische Aspekte, sondern auch die Wechselwirkungen von Laserstrahlung unterschiedlicher Wellenlänge mit verschiedenen keramischen Werkstoffen durch Parameterstudien untersucht werden. Um ein möglichst breites Anwendungsspektrum abzudecken, kommen dabei zwei unterschiedliche Sinteranlagen mit verschiedenen Lasern - CO2 und Nd:YAG - zur Anwendung.

Neben der bereits erwähnten Methode - Bauteilaufbau mit einem fahrbaren Objekttisch und lagenweise diskontinuierlicher Pulverzuführung - wird eine weitere Methode mit kontinuierlicher Pulverzuführung angewandt. Kernstück der Anlage ist ein Roboterarm, der in einem speziellen Kopf einen Lichtwellenleiter und eine pneumatische Pulverzuführung kombiniert. Durch diese Anordnung treffen Laserstrahl und keramisches Pulver in einer Düse aufeinander und die Wechselwirkungen finden statt, bevor das Material die Düse verlässt.

Im Vergleich zur Verwendung von Verfahreinheiten für das Pulverbett ist es mit dem wesentlich flexibler einsetzbaren Roboter möglich, Bewegungen des Laserstrahls nebst Pulverzuführung frei im Raum durchzuführen und somit kompliziert geformte monolithische keramische Bauteile herzustellen oder verschiedenste Bauteilgeometrien mit keramischem Material zu beschichten.

Im Gegensatz zu konventionellen Herstellungsverfahren werden beim Lasersintern die Aufheiz- und Abkühlvorgänge des Materials wesentlich beschleunigt. Die sich daraus ergebenden Unterschiede im Materialverhalten sind Gegenstand der laufenden Untersuchungen.

Die Ankopplung des Laserstrahls an die Materie vollzieht sich innerhalb einer Eindringtiefe bis annähernd zum doppelten seiner Wellenlänge und somit innerhalb eines Bruchteils der eigentlichen Schichtdicke. Alle weiteren das Pulver verfestigenden Prozesse werden demzufolge nur aufgrund von Wärmeleitprozessen innerhalb der Schüttung ausgelöst.

Beim schichtweisen Aufbau eines Bauteils mit Schichtdicken von teilweise unter 100 µm wird in der Regel eine hohe Relativgeschwindigkeit zwischen Laserstrahl und Materie gewählt, damit der Energieeintrag nicht zu hoch wird. Daraus ergeben sich Laser-Stoff-Wechselwirkungszeiten von wenigen µs. Diese Beziehungen werden im Rahmen einer Kooperation mit dem Physikalischen Institut eingehend untersucht. Dabei steht nicht die Wechselwirkung eines kompakten homogenen Werkstoffs mit Laserstrahlung, sondern vielmehr die Wechselwirkung einzelner Pulverpartikel bzw. einer losen Pulverschüttung mit dem Laserstrahl im Vordergrund. In der Kooperation der beiden Institute soll ein mesoskopisches Modell zur Beschreibung der Strahl-Pulver-Wechselwirkung entwickelt werden.


Weitere Informationen:
Prof. Dr.-Ing. Jürgen Heinrich
Institut für Nichtmetallische Werkstoffe
Tel. +49-(0)-5323-72 2354
Fax:+49-(0)-5323-72-3119
e-mail: heinrich@naw.tu-clausthal.de
Zehntnerstraße 2A
38678 Clausthal-Zellerfeld

Weitere Informationen finden Sie im WWW:

Jochen Brinkmann |

Weitere Berichte zu: Laserstrahl

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Zukunft Personal: Workforce Management – Richtig aufgestellt für die voranschreitende Digitalisierung
25.07.2017 | GFOS mbH Gesellschaft für Organisationsberatung und Softwareentwicklung mbH

nachricht EMAG auf der EMO: Elektrische Antriebssysteme und die „Smart Factory“ stehen im Fokus
05.07.2017 | EMAG GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise