POWTECH 2001: Der "Katheter" im Silo beugt Verstopfungen vor


Sonde misst Fließgeschwindigkeit von Partikeln auch im Inneren von Pulverschichten

Wer kennt sie nicht, die Silos auf Baustellen. In ihnen wird meist Zement, Kalk, Gips oder ein anderes pulverförmiges Material eingefüllt, gelagert und später wieder abgefüllt. Doch die Fließprozesse in Silos haben es in sich, denn Pulver ist nicht gleich Pulver. Sind die Pulverpartikel sehr klein, fließen sie plötzlich nicht mehr so gut. Im Innern eines Schüttgutsilos bewegen sie sich nur noch in einem engen Schacht über der Ausflussöffnung. Im Extremfall können die Pulverpartikel an dieser Öffnung sogar eine so genannte Brücke bilden und dann fließt kein Pulver mehr – das Silo ist verstopft.

Um solche Havarien zu vermeiden, haben Wissenschaftler der Professur Technische Thermodynamik der Technischen Universität Chemnitz ein neues Werkzeug entwickelt, mit dem das Fließverhalten, genauer gesagt die Geschwindigkeit der Pulverpartikel in Schüttungen systematisch ermittelt werden kann. Die Forscher unter Leitung von Dr. Dieter Petrak stellen ihr neues Geschwindigkeitsmesssystem zum ersten Mal vom 27. bis 29. März 2001 auf der Internationalen Pulvermesse POWTECH in Nürnberg (Halle 9, Stand 223) vor. An der Entwicklung beteiligt waren auch das Chemnitzer Unternehmen parsum, das sich aus der Uni ausgegründet hat, und die Firma Eurospace Technische Entwicklungen in Flöha.

Wie funktioniert das Prinzip des neuen Messsystems? Um die Geschwindigkeit des Pulvers messen zu können, müssen die einzelnen Partikel erst einmal ein Signal erzeugen. Dazu werden die Pulverpartikel mit Hilfe von lichtleitenden Glasfasern beleuchtet. Das von den Partikeloberflächen gestreute und reflektierte Licht trägt dann sozusagen die Geschwindigkeitsinformation in sich, die mittels Signalanalyse herausgefiltert wird. Das Messsystem besteht aus einem wie ein medizinischer Katheter aussehender stabförmiger Sensor (Außendurchmesser: zwei Millimeter), der in die Pulverschüttung eingeführt wird. An seiner Spitze endet eine Faseroptik, die gleichzeitig als Lichtsender und Lichtempfänger wirkt.

Das Chemnitzer Verfahren ist nicht das einzige zur Messung der Geschwindigkeit von Pulverpartikeln in fließenden Pulverschichten. Weitere Methoden sind die beispielsweise an der TU Braunschweig angewandten Verfahren der „Particle Image Velocimetry“ und der „Particle Tracking Velocimetry“, die eine so genannte CCD-Kamera benutzen. Diese Verfahren können jedoch nur an den Oberflächen der fließenden Pulver eingesetzt werden. Dem gegenüber kann das Chemnitzer Verfahren auch im Innern von Pulverschichten Geschwindigkeiten messen und das auch für sehr feine Pulverpartikel in der Größe von einem tausendstel Millimeter.

Weitere Informationen: Technische Universität Chemnitz, Professur Technische Thermodynamik, Telefon (03 71) 5 31 – 47 17, Fax (03 71) 5 31 – 23 49, E-Mail petrak@imech.tu-chemnitz.de , http://www.tu-chemnitz.de/mbv/TechnThDyn

Weitere Informationen finden Sie im WWW:

Media Contact

Dipl.-Ing. Mario Steinebach idw

Alle Nachrichten aus der Kategorie: Messenachrichten

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer