Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Virtuelles Mikroskop“ für Sinnesforschung entwickelt

07.08.2017

Forscher der Universitätsmedizin Göttingen und des Italienischen Instituts für Technologie entwickeln neues Verfahren für die Sinnesforschung: Aus den Reaktionen von Nervenzellen auf Sinnesreize lassen sich die Verschaltungen der Nervenzellen in einem Netzwerk sichtbar machen. Veröffentlicht im renommierten Wissenschaftsmagazin „Nature Communications“.

Die Entwicklung von Sinnesprothesen zum Sehen oder Hören ist ein Ziel von Sinnesforschung. Doch die Arbeit der Sinnesforscher war bisher erschwert, weil sie die natürlichen Verknüpfungen der Nervenzellen dafür nicht genau genug untersuchen können.


Gefärbte Nervenzelle der Netzhaut in rot, zusammen mit elliptischen Bereichen, die die Umrisse vorgeschalteter Nervenzellen anzeigen.

Abbildung: umg


Prof. Dr. Tim Gollisch, Klinik für Augenheilkunde der Universitätsmedizin Göttingen (UMG).

Foto: privat

Eine Forschergruppe der Universitätsmedizin Göttingen hat in Zusammenarbeit mit Wissenschaftlern des Italienischen Instituts für Technologie ein neues Verfahren für die Sinnesforschung entwickelt. Mit ihm gelingt es, aus Messungen der Reaktionen einzelner Nervenzellen auf sensorische Reize ein Abbild vorgeschalteter Nervenzellen zu rekonstruieren.

Das „virtuelle Mikroskop“ macht komplexe Verschaltungen von Nervenzellen „sichtbar“, die bisher nicht erkennbar waren. Dies erleichtert die Untersuchung der Sinnessysteme und damit auch die Entwicklung von Sinnesprothesen.

Die Untersuchungen zur Entwicklung des neuartigen virtuellen Mikroskops für die Sinnesforschung wurden unter der Leitung von Prof. Dr. Tim Gollisch, Professor für „Sensory Processing in the Retina“ in der Klinik für Augenheilkunde an der Universitätsmedizin Göttingen, durchgeführt. Mit ihrer neuartigen Methode haben die Forscher bereits Verschaltungen von Nervenzellen in der Netzhaut des Auges rekonstruiert.

Für die Zukunft hoffen sie, dass sich damit auch Therapiemethoden testen und verbessern lassen, die derzeit zur künstlichen Anregung der Netzhaut im Fall von Blindheit entwickelt werden. Die Ergebnisse sind jetzt im renommierten Wissenschaftsmagazin „Nature Communications“ veröffentlicht.

Originalveröffentlichung: Liu JK, Schreyer HM, Onken A, Rozenblit F, Khani MH, Krishnamoorthy V, Panzeri S, Gollisch T (2017). Inference of neuronal functional circuitry with spike-triggered non-negative matrix factorization. Nature Communications 8, Article number: 149 (2017). doi:10.1038/s41467-017-00156-9. https://www.nature.com/articles/s41467-017-00156-9

„Die Nervenzellen in unseren Sinnessystemen reagieren auf spezifische Sinnesreize in der Umgebung und lassen uns so beispielsweise Farbe, Bewegungen und Töne erkennen. Auf welche Reizeigenschaften eine Nervenzelle reagiert, hängt größtenteils davon ab, von welchen anderen, vorgeschalteten Nervenzellen sie ihre Eingänge erhält. Im dichten Gedränge der Nervenfasern im Gehirn ist aber meist nicht ohne Weiteres ersichtlich, welche Nervenzellen mit welchen anderen verbunden sind. Dies erschwert die Untersuchung der Sinnessysteme und damit auch die Entwicklung von Sinnesprothesen“, sagt Prof. Dr. Tim Gollisch, Senior-Autor der Publikation.

WIE DAS VIRTUELLE MIKROSKOP FUNKTIONIERT

Um die Verschaltungen der Nervenzellen zu rekonstruieren, bedienen sich die Forscher moderner Analysemethoden aus dem Feld des maschinellen Lernens. Üblicherweise werden diese Methoden beispielsweise für die Analyse von Bildern verwendet, etwa um Objekte in Fotos zu erkennen. Diese Vorgehensweise haben die Forscher abgewandelt, um statt Objekten in Fotos nun einzelne Nervenzellsignale in komplexen Aktivierungsmustern zu erkennen.

„Wir verwenden die Datenanalyse wie ein virtuelles Mikroskop, um ein Abbild der neuronalen Verschaltungen zu erstellen“, sagt Prof. Gollisch. „Wir messen die Signale von etwa hundert Nervenzellen einer Zellschicht und können anschließend zirka tausend Zellen der vorhergehenden Zellschicht rekonstruieren und bestimmen, welche einzelnen Zellen zwischen diesen Zellschichten verbunden sind.“

Zugrunde liegt diesem virtuellen Mikroskop ein mathematisches Modell der Verschaltungen. Leistungsstarke Computer helfen bei der Berechnung. Trotzdem dauert es einige Tage, bis die komplexen Rechnungen durchgeführt und die Zellschichten rekonstruiert sind. Anschließend bietet sich ein detailreicher Blick auf die Verschaltungen der Nervenzellen der Netzhaut.

„Wenn in einer an sich blinden Netzhaut einige Zellen der einen Zellschicht durch lichtsensitive Proteine künstlich erregbar sind dann können wir mit dieser Methode erfassen, wie die künstliche Erregung an die nächste Zellschicht weitergegeben wird“, sagt Prof. Gollisch. Damit, so die Hoffnung, lassen sich diese Therapieansätze zur Wiederherstellung des Sehsinns bei Blindheit überprüfen und verfeinern, um möglichst natürliche Aktivierungsmuster hervorzurufen.

WEITERE INFORMATIONEN
Universitätsmedizin Göttingen, Georg-August-Universität
Klinik für Augenheilkunde
AG Sensory Processing in the Retina
Prof. Dr. Tim Gollisch, Telefon 0551 / 39-13542, tim.gollisch@med.uni-goettingen.de

www.retina.uni-goettingen.de

Stefan Weller | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Fraunhofer IGB wirkt bei Gestaltung des europäischen Fahrplans für Organ-on-a-Chip-Technologie mit
14.11.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht Entwicklung modernster Navigationssysteme für die Gefäßchirurgie
06.11.2017 | Universität zu Lübeck

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte