Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Handwerk im Dienste der Wissenschaft - Der neue Bandscheiben-Belastungssimulator

23.07.2014

An der Uni Ulm arbeiten Wissenschaft und Werkstatt Hand in Hand.

Wie erfolgreich diese Zusammenarbeit ist, zeigt der neue Bandscheiben-Belastungssimulator, der jetzt am Institut für Unfallchirurgische Forschung und Biomechanik (UFB) seinen Dienst aufgenommen hat. Das massive Gerät aus poliertem Stahl und Aluminium ist eine Spezialanfertigung der Uni-eigenen Wissenschaftlichen Werkstatt Feinwerktechnik (WWF). Mit dieser Apparatur wollen Ulmer Biomechaniker den Ursachen von Bandscheibenvorfällen auf den Grund gehen.


Der neue Bandscheibenbelastungssimulator aus der Wissenschaftlichen Werkstatt der Uni Ulm

Foto: Elvira Eberhardt / Uni Ulm

An der Uni Ulm arbeiten Wissenschaft und Werkstatt Hand in Hand. Wie erfolgreich diese Zusammenarbeit ist, zeigt der neue Bandscheiben-Belastungssimulator, der jetzt am Institut für Unfallchirurgische Forschung und Biomechanik (UFB) seinen Dienst aufgenommen hat. Das massive Gerät aus poliertem Stahl und Aluminium ist eine Spezialanfertigung der Uni-eigenen Wissenschaftlichen Werkstatt Feinwerktechnik (WWF).

„Mit dieser Apparatur wollen wir den Ursachen eines Bandscheibenvorfalls auf den Grund gehen. Einzelne Bewegungssegmente aus der unteren Wirbelsäule können mechanisch so belastet werden, wie dies bei verschiedensten Dreh-, Beuge- und Hebebewegungen geschieht“, erläutert Professor Hans-Joachim Wilke, der stellvertretende Institutsdirektor und Leiter des Forschungsbereichs Wirbelsäule im Institut. Die Wissenschaftler verwenden dafür biologische Bandscheibenpräparate, beispielsweise vom Schaf, die in Aufbau und Struktur der des Menschen gleichen. Aber auch humane Präparate selbst kommen zum Einsatz.

Insgesamt hat es fast vier Jahre gebraucht, bis aus den ersten Zeichnungen und Konstruktionsentwürfen, nach zahlreichen Optimierungen der ersten Prototypen das fertige Gerät in Betrieb genommen werden konnte. Gefördert wurde die mehrjährige Entwicklung des Gerätes von der Deutschen Forschungsgemeinschaft (DFG). „Die rein elektrisch betriebene Maschine kann über sechs getrennt regelbare Achsen unterschiedlichste Dreh- und Schwenkbewegungen ausführen und dabei zusätzlich verschiedenste Kompressionsbelastungen und Scherbeanspruchungen auf die Bandscheibe aufbringen“, erläutert Nikolaus Berger-Roscher, Doktorand von Professor Wilke.

„Wir sind sehr froh, dass wir im Haus eine so hervorragend ausgestattete Wissenschaftliche Werkstatt haben. Dort wird phänomenale Arbeitet geleistet“, lobt Berger-Roscher, und Wilke ergänzt: „Die Universität Ulm kann stolz sein, dass sie gegen den allgemeinen Trend eine hauseigene Werkstätte hat, wo selbst solche komplexe Apparaturen konstruiert und gebaut werden können.“ Und die Ulmer Biomechanik-Experten können dies in der Tat beurteilen. Beide sind studierte Maschinenbauer, spezialisiert auf Medizintechnik. Die ersten Zeichnungen und Konstruktionsentwürfe stammen von ihnen. Überhaupt sind Arbeitsgruppe und Institut sehr interdisziplinär. „Hier arbeiten Ingenieure, Mediziner und Naturwissenschaftler Hand in Hand, darunter Maschinenbauer, Informatiker, Tiermediziner und Molekularbiologen“, zählt Wilke auf.

Das erleichtert natürlich die Arbeit an der Schnittstelle zwischen Medizin und Mechanik und ist sicher eine gute Voraussetzung für die enge fachliche Zusammenarbeit mit der Werkstatt. „Der persönliche Kontakt im Haus macht es möglich, auftretende Probleme schnellstmöglich zu lösen. Mit externen Dienstleistern wäre das sicher viel schwieriger“, meint Berger-Roscher.

Die Wissenschaftliche Werkstatt Feinwerktechnik profitiert dabei insbesondere davon, dass sie als Ausbildungsbetrieb der Universität ihre eigenen Fachkräfte heranzieht. Wie Alexander Vogel zum Beispiel: Der 1983 geborene Techniker für Maschinenbau, hat vor seinem Abschluss an der Ulmer Robert-Bosch-Schule in der Wissenschaftlichen Werkstatt der Uni eine Lehre als Feinwerkmechaniker gemacht und leitet jetzt die Konstruktion in der Feinwerktechnik.

Bis zu 60 Projekte wickelt er als Konstrukteur pro Jahr für seine Auftraggeber ab. Vom Institutsleiter bis zum Studenten, vom Postdoc bis zum Techniker – seine Dienste sind viel gefragt. Dabei geht es meist um Apparatebau für größere Forschungsprojekte, aber auch um technische Unterstützung bei Abschlussarbeiten. Seit Sommer letzten Jahres arbeitet Vogel an der Konstruktion und Optimierung des sogenannten dynamischen Bandscheiben-Belastungssimulators, um ihm die Kinderkrankheiten auszutreiben. Gebaut wurde die massive Apparatur schließlich vom hauseigenen Metallbau unter der fachlichen Anleitung von Wolfgang Rapp.

Berger-Roscher untersucht nun in seinem Promotionsprojekt mit Hilfe dieses Gerätes das Schädigungsverhalten der Bandscheibe. Mit Hilfe des Bandscheiben-Belastungssimulators soll geklärt werden, wie sich bestimmte Belastungen auf die Gewebestruktur der Bandscheibe auswirken. Dabei werden Gewebeschäden durch simulierte Belastungssituationen gezielt herbeigeführt. Diese künstlichen Bandscheibenverletzungen werden dann mit einem hochauflösenden Ultrahochfeld-Kernspinresonanztomograph und der fachlichen Expertise von Professor Volker Rasche aus der Core-Facility Kleintier-Bildgebung der medizinischen Fakultät analysiert.

Auf der Grundlage dieser Aufnahmen werden schließlich 3D-Rekonstruktionen der verletzten Bandscheibe erstellt, um Art und Verlauf der Verletzung besser beurteilen zu können. Komplexe mathematische Modelle helfen zusätzlich, theoretisch aus der Struktur und Beschaffenheit der Bandscheibe abgeleitete mögliche Schwachstellen am Computer zu modellieren, um die genaue Entstehungsgeschichte besser erklären zu können.

Die Leistungen und Expertisen des Ulmer Forschungsbereichs Wirbelsäule sind übrigens weltweit gefragt – ob es dabei um Grundlagen, chirurgische Verfahren, Operationstechniken oder Wirbelsäulenimplantate geht. Bereichsleiter Professor Hans-Joachim Wilke, der an der Universität Ulm promoviert und habilitiert hat, weiß genau, dass auch die Arbeit der Wissenschaftlichen Werkstatt hieran einen nicht unbeträchtlichen Anteil hat. Fast so etwas wie berühmt ist mittlerweile der sogenannte Wirbelsäulensimulator, der ebenfalls aus Uni-eigener Fertigung stammt. An diesem 20 Jahre alten Gerät forschten auch schon renommierte Gast-Wissenschaftler aus dem Ausland.

Weitere Informationen:
Prof. Dr. Hans-Joachim Wilke (UFB): Tel.: 0731 / 500 - 55320; Email: hans-joachim.wilke@uni-ulm.de;
Alexander Vogel (WWF): Tel.: 0731 / 50 – 22522; Email: alexander.vogel@uni-ulm.de;

Hintergrundinformationen

Wie entstehen Bandscheibenvorfälle?
Im Feld kursieren zwei Hypothesen zur Entstehung von Bandscheibenvorfällen. Bei der einen vermuten die Wissenschaftler Strukturdefekte und Schwachstellen im sogenannten Faserring. Dieses Gewebe aus mehreren kollagenen Lamellenschichten, die fest miteinander verbunden sind und eine alternierende Faserausrichtung besitzen, umgibt den weicheren Gallertkern im Innern, gibt ihm Form und Halt. Beim Bandscheibenvorfall, so die Faserring-Hypothese, durchdringt das gallertartige Gewebe aus dem Inneren an den Schwachstellen – wie eine Laufmasche – Faserring nach Fasserring, bis die letzte Schicht aufreißt und das Gewebe auf den Rückennerv drückt. Die Ulmer Wirbelsäulenforscher glauben aber, dass die Gewebedefekte auch im Übergangsbereich zwischen Bandscheibe und Wirbelkörper auftreten können und haben sogar schon erste Indizien für diese so genannte Deckplattentheorie gefunden.

Verantwortlich: Andrea Weber-Tuckermann

Andrea Weber-Tuckermann | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-ulm.de/

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Radioembolisation: Beim Leberkrebs mehr als nur eine Alternative!
22.05.2017 | Deutsche Röntgengesellschaft e.V.

nachricht Ein neuer Blick in die Lunge (und andere Organe)
19.05.2017 | Deutsche Röntgengesellschaft e.V.

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie