Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit dem Gamma Knife Hirntumore sanft entfernen

03.03.2006


Experten informieren über moderne Radiochirurgie mit dem Gamma Knife auf einer Fortbildung der Landesärztekammer Hessen und des Universitätsklinikums Frankfurt am Main.

Mit der"sanften" Chirurgie des strahlenbasierten Eingriffs zerstört die radiochirurgische Medizin Tumore im menschlichen Gehirn, ohne operationstypische Spuren zu hinterlassen. Das so genannte Gamma Knife, auch "Strahlenskalpell" genannt, behandelt Erkrankungen im Schädelinnern des Patienten durch Bestrahlung schonend, effizient und sicher. Vom schwedischen Neurochirurgen Lars Leksell entwickelt und 1968 erstmals erprobt, wird diese Behandlungsmethode weltweit umfangreich als Alternative oder im Rahmen multimodaler, interdisziplinäre Therapiekonzepte in der Neurochirurgie zunehmend wichtiger und ihre Einsatzmöglichkeiten vielfältiger: Neben Gehirn- und Schädelbasistumoren, werden mit Hilfe des Gamma Knife unter anderem Gefäßmalformationen, Tumore im Auge und funktionelle Erkrankungen wie z. B. die Trigeminusneuralgie behandelt.

Diese Vielfalt ist Thema der gemeinsamen neurochirurgischen Fortbildung der Akademie für Ärztliche Fort- und Weiterbildung der Landesärztekammer Hessen und des Gamma Knife Zentrums am Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, die am 04. März 2006 in Bad Nauheim stattfindet. Experten des Universitätsklinikums Frankfurt und weiterer Gamma Knife-Zentren in Deutschland und Österreich stellen in ihren Vorträgen aus neurochirurgischer und strahlentherapeutischer Sicht die Entwicklung, Technik und Anwendungsgebiete des Gamma Knife vor und diskutieren diese mit den Teilnehmern. Die Veranstaltung mit dem Titel "Gamma Knife Radiochirurgie - Einsatzmöglichkeiten im Rahmen moderner, interdisziplinärer Therapiestrategien" wird von Dr. med. Robert Wolff, Neurochirurg und Leiter des Gamma Knife Zentrums am Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main und Professor Dr. med. V. Seifert, Direktor der Klinik für Neurochirurgie am Universitätsklinikum Frankfurt am Main geleitet.

Präzision bis in den Submillimeterbereich senkt Risiko

Besonders bei der chirurgischen Behandlung von Erkrankungen wie Schädelbasistumoren, Metastasen, arterio-venösen Angiomen sowie der Trigeminusneuralgie ist Präzision bis in den Submillimeterbereich erfolgsentscheidend. Tief liegende Tumore, Metastasen und Gefäßmissbildungen zu operieren ist mit einem hohen Risiko für das umliegende gesunde Gewebe im betroffenen Areal verbunden. Das Gamma Knife reduziert dieses Risiko, da es im Submillimeterbereich operiert und den "Eingriff" punktgenau auf den Krankheitsherd begrenzt. Ohne operativen Eingriff können mit Hilfe des Strahlenskalpells tief liegende Hirntumore von bis zu 3,5 Zentimetern Durchmesser oder Gefäßfehlbildungen inaktiviert werden. "Besonders bei der Entfernung von Akustikusneurinomen agiert das Gamma Knife als Ergänzung zur mikrochirurgischen Operation, wenn bei sehr großen Tumoren zunächst eine mikrochirurgische Teilentfernung mit anschließender Radiochirurgie erfolgt, um das Risiko niedrig zu halten", erklärt Neurochirurg Dr. Wolff.

Das Gerät funktioniert über 201 kreisförmig angeordnete Strahlenquellen, die nur in der Bündelung ihre volle Wirkung entfalten.

Die Behandlung, die fast immer ambulant oder im Rahmen eines kurzstationären Aufenthaltes erfolgt, teilt sich auf in Planungsphase und Strahlungsbehandlung. Zunächst wird der Kopf des Patienten in einem stereotaktischen Rahmen verankert. Spezielle Markierungen am Rahmen erlauben es dem Mediziner, mit Hilfe von Computerdaten ein dreidimensionales Bestrahlungsfeld zu berechnen. Dieses Feld bildet die Form des Krankheitsherdes möglichst exakt nach. Je nach Art der Erkrankung kann die bildgebende Diagnostik noch um zusätzliche Untersuchungstechnologien erweitert werden, die die Zuordnung von Bestrahlungsfeld und Krankheitsherd verfeinern: Eine Analyse der Feinanatomie des Gehirns des Patienten erfolgt mit Hilfe von Magnetresonanztomografie (MRT) oder Computertomografie (CT), eine Gefäßdarstellung nimmt der Mediziner mit Hilfe einer digitalen Subtraktionsangiografie (DSA) vor. Diese Bildinformationen stellen die Basis für die Diagnostik, Operationsplanung und Nachfolgeuntersuchung dar.

Den Erhalt gesunden Gewebes steigern

Bei der eigentlichen radiochirurgischen Behandlung wird der Patient mehrmals in das Bestrahlungsgerät gefahren, das den gesamten Krankheitsherd des Patienten Strahlenpunkt für Strahlenpunkt (Isozentren) bestrahlt. Nach circa ein bis zwei Stunden ist die Bestrahlung beendet. Nach erfolgter Abtötung des Krankheitsherds muss sich der Patient einer regelmäßigen Nachkontrolle unterziehen um den Behandlungserfolg immer wieder nachprüfen zu können. Das Strahlenskalpell erweist sich dabei sehr häufig als sehr effektives, präzises und sehr sicheres Instrument zur Bekämpfung im Kopf befindlicher Tumore, Angiome und anderer Läsionen. "Das Gamma Knife hilft dem Chirurgen, einen Tumor möglichst vollständig unter Erhaltung wichtiger funktioneller und vaskulärer Strukturen im Gehirn des Patienten zu inaktivieren. Dieses Therapiekonzept senkt die Morbidität und Mortalität neurochirurgischer Operationen ", bringt Professor Dr. Seifert den Vorteil des Gerätes auf den Punkt. Zudem könne die zeitlich langwierige herkömmliche Strahlentherapie von mehrmonatiger Dauer vermieden werden, so Professor Seifert.

Die enge Anbindung des Therapiezentrums an das Uniklinikum Frankfurt gewährleistet dem Patienten eine umfassende und interdisziplinäre Versorgung in Diagnostik, Therapie und Nachsorge. Spezialisten der Bereiche Neurologie, Neurochirurgie, Neuroradiologie oder Onkologie kooperieren eng mit dem Gamma Knife-Team. Eben diesen therapeutischen Vorteil interdisziplinärer Behandlungskonzepte behandelt Professor Dr. Volker Seifert, Direktor der Klinik und Poliklinik für Neurochirurgie am Uniklinikum Frankfurt, in seinem Vortrag über "Kombinierte neurochirurgische-radiochirurgische Therapie von Tumoren der Schädelbasis".

Die GKF GmbH - Gamma Knife Zentrum Frankfurt des Klinikums der Johann Wolfgang Goethe-Universität Frankfurt am Main bietet als einziges Therapiezentrum dieser Art in Hessen seit 2001 die lokal applizierte strahlenbasierte "sanfte" radiochirurgische Behandlung an. Mit der Fortbildung erhalten Mediziner wichtige Informationen, um sich in dieser fachlich sehr anspruchsvollen Therapieform weiterzubilden.

Für weitere Informationen:

Dr. med. Robert Wolff
Gamma Knife Zentrum
Klinikum der J.W. Goethe-Universität Frankfurt/ Main
Fon (0 69) 67735910
Fax (0 69) 667735911
E-Mail r.wolff@gkfrankfurt.de

Prof. Dr. med. Volker Seifert
Klinik und Poliklinik für Neurochirurgie
Klinikum der J.W. Goethe-Universität Frankfurt/ Main
Fon (0 69) 63 01 - 52 95
Fax (0 69) 63 01 - 63 22
E-Mail v.seifert@em.uni-frankfurt.de

Ricarda Wessinghage
Presse- und Öffentlichkeitsarbeit
Klinikum der J.W. Goethe-Universität Frankfurt/ Main
Fon (0 69) 63 01 - 77 64
Fax (0 69) 63 01 - 8 32 22
E-Mail ricarda.wessinghage@kgu.de

Ricarda Wessinghage | idw
Weitere Informationen:
http://www.kgu.de
http://www.kgu.de/neurochirurgie/

Weitere Berichte zu: Neurochirurgie

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Auf die richtige Verbindung kommt es an: Tiefe Hirnstimulation bei Parkinsonpatienten individuell anpassen
22.06.2017 | Charité – Universitätsmedizin Berlin

nachricht Forschungsprojekt BabyLux: Neues Messinstrument schützt Frühgeborene vor Gehirnschädigungen
12.06.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie