Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit dem Gamma Knife Hirntumore sanft entfernen

03.03.2006


Experten informieren über moderne Radiochirurgie mit dem Gamma Knife auf einer Fortbildung der Landesärztekammer Hessen und des Universitätsklinikums Frankfurt am Main.

Mit der"sanften" Chirurgie des strahlenbasierten Eingriffs zerstört die radiochirurgische Medizin Tumore im menschlichen Gehirn, ohne operationstypische Spuren zu hinterlassen. Das so genannte Gamma Knife, auch "Strahlenskalpell" genannt, behandelt Erkrankungen im Schädelinnern des Patienten durch Bestrahlung schonend, effizient und sicher. Vom schwedischen Neurochirurgen Lars Leksell entwickelt und 1968 erstmals erprobt, wird diese Behandlungsmethode weltweit umfangreich als Alternative oder im Rahmen multimodaler, interdisziplinäre Therapiekonzepte in der Neurochirurgie zunehmend wichtiger und ihre Einsatzmöglichkeiten vielfältiger: Neben Gehirn- und Schädelbasistumoren, werden mit Hilfe des Gamma Knife unter anderem Gefäßmalformationen, Tumore im Auge und funktionelle Erkrankungen wie z. B. die Trigeminusneuralgie behandelt.

Diese Vielfalt ist Thema der gemeinsamen neurochirurgischen Fortbildung der Akademie für Ärztliche Fort- und Weiterbildung der Landesärztekammer Hessen und des Gamma Knife Zentrums am Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main, die am 04. März 2006 in Bad Nauheim stattfindet. Experten des Universitätsklinikums Frankfurt und weiterer Gamma Knife-Zentren in Deutschland und Österreich stellen in ihren Vorträgen aus neurochirurgischer und strahlentherapeutischer Sicht die Entwicklung, Technik und Anwendungsgebiete des Gamma Knife vor und diskutieren diese mit den Teilnehmern. Die Veranstaltung mit dem Titel "Gamma Knife Radiochirurgie - Einsatzmöglichkeiten im Rahmen moderner, interdisziplinärer Therapiestrategien" wird von Dr. med. Robert Wolff, Neurochirurg und Leiter des Gamma Knife Zentrums am Klinikum der Johann Wolfgang Goethe-Universität Frankfurt am Main und Professor Dr. med. V. Seifert, Direktor der Klinik für Neurochirurgie am Universitätsklinikum Frankfurt am Main geleitet.

Präzision bis in den Submillimeterbereich senkt Risiko

Besonders bei der chirurgischen Behandlung von Erkrankungen wie Schädelbasistumoren, Metastasen, arterio-venösen Angiomen sowie der Trigeminusneuralgie ist Präzision bis in den Submillimeterbereich erfolgsentscheidend. Tief liegende Tumore, Metastasen und Gefäßmissbildungen zu operieren ist mit einem hohen Risiko für das umliegende gesunde Gewebe im betroffenen Areal verbunden. Das Gamma Knife reduziert dieses Risiko, da es im Submillimeterbereich operiert und den "Eingriff" punktgenau auf den Krankheitsherd begrenzt. Ohne operativen Eingriff können mit Hilfe des Strahlenskalpells tief liegende Hirntumore von bis zu 3,5 Zentimetern Durchmesser oder Gefäßfehlbildungen inaktiviert werden. "Besonders bei der Entfernung von Akustikusneurinomen agiert das Gamma Knife als Ergänzung zur mikrochirurgischen Operation, wenn bei sehr großen Tumoren zunächst eine mikrochirurgische Teilentfernung mit anschließender Radiochirurgie erfolgt, um das Risiko niedrig zu halten", erklärt Neurochirurg Dr. Wolff.

Das Gerät funktioniert über 201 kreisförmig angeordnete Strahlenquellen, die nur in der Bündelung ihre volle Wirkung entfalten.

Die Behandlung, die fast immer ambulant oder im Rahmen eines kurzstationären Aufenthaltes erfolgt, teilt sich auf in Planungsphase und Strahlungsbehandlung. Zunächst wird der Kopf des Patienten in einem stereotaktischen Rahmen verankert. Spezielle Markierungen am Rahmen erlauben es dem Mediziner, mit Hilfe von Computerdaten ein dreidimensionales Bestrahlungsfeld zu berechnen. Dieses Feld bildet die Form des Krankheitsherdes möglichst exakt nach. Je nach Art der Erkrankung kann die bildgebende Diagnostik noch um zusätzliche Untersuchungstechnologien erweitert werden, die die Zuordnung von Bestrahlungsfeld und Krankheitsherd verfeinern: Eine Analyse der Feinanatomie des Gehirns des Patienten erfolgt mit Hilfe von Magnetresonanztomografie (MRT) oder Computertomografie (CT), eine Gefäßdarstellung nimmt der Mediziner mit Hilfe einer digitalen Subtraktionsangiografie (DSA) vor. Diese Bildinformationen stellen die Basis für die Diagnostik, Operationsplanung und Nachfolgeuntersuchung dar.

Den Erhalt gesunden Gewebes steigern

Bei der eigentlichen radiochirurgischen Behandlung wird der Patient mehrmals in das Bestrahlungsgerät gefahren, das den gesamten Krankheitsherd des Patienten Strahlenpunkt für Strahlenpunkt (Isozentren) bestrahlt. Nach circa ein bis zwei Stunden ist die Bestrahlung beendet. Nach erfolgter Abtötung des Krankheitsherds muss sich der Patient einer regelmäßigen Nachkontrolle unterziehen um den Behandlungserfolg immer wieder nachprüfen zu können. Das Strahlenskalpell erweist sich dabei sehr häufig als sehr effektives, präzises und sehr sicheres Instrument zur Bekämpfung im Kopf befindlicher Tumore, Angiome und anderer Läsionen. "Das Gamma Knife hilft dem Chirurgen, einen Tumor möglichst vollständig unter Erhaltung wichtiger funktioneller und vaskulärer Strukturen im Gehirn des Patienten zu inaktivieren. Dieses Therapiekonzept senkt die Morbidität und Mortalität neurochirurgischer Operationen ", bringt Professor Dr. Seifert den Vorteil des Gerätes auf den Punkt. Zudem könne die zeitlich langwierige herkömmliche Strahlentherapie von mehrmonatiger Dauer vermieden werden, so Professor Seifert.

Die enge Anbindung des Therapiezentrums an das Uniklinikum Frankfurt gewährleistet dem Patienten eine umfassende und interdisziplinäre Versorgung in Diagnostik, Therapie und Nachsorge. Spezialisten der Bereiche Neurologie, Neurochirurgie, Neuroradiologie oder Onkologie kooperieren eng mit dem Gamma Knife-Team. Eben diesen therapeutischen Vorteil interdisziplinärer Behandlungskonzepte behandelt Professor Dr. Volker Seifert, Direktor der Klinik und Poliklinik für Neurochirurgie am Uniklinikum Frankfurt, in seinem Vortrag über "Kombinierte neurochirurgische-radiochirurgische Therapie von Tumoren der Schädelbasis".

Die GKF GmbH - Gamma Knife Zentrum Frankfurt des Klinikums der Johann Wolfgang Goethe-Universität Frankfurt am Main bietet als einziges Therapiezentrum dieser Art in Hessen seit 2001 die lokal applizierte strahlenbasierte "sanfte" radiochirurgische Behandlung an. Mit der Fortbildung erhalten Mediziner wichtige Informationen, um sich in dieser fachlich sehr anspruchsvollen Therapieform weiterzubilden.

Für weitere Informationen:

Dr. med. Robert Wolff
Gamma Knife Zentrum
Klinikum der J.W. Goethe-Universität Frankfurt/ Main
Fon (0 69) 67735910
Fax (0 69) 667735911
E-Mail r.wolff@gkfrankfurt.de

Prof. Dr. med. Volker Seifert
Klinik und Poliklinik für Neurochirurgie
Klinikum der J.W. Goethe-Universität Frankfurt/ Main
Fon (0 69) 63 01 - 52 95
Fax (0 69) 63 01 - 63 22
E-Mail v.seifert@em.uni-frankfurt.de

Ricarda Wessinghage
Presse- und Öffentlichkeitsarbeit
Klinikum der J.W. Goethe-Universität Frankfurt/ Main
Fon (0 69) 63 01 - 77 64
Fax (0 69) 63 01 - 8 32 22
E-Mail ricarda.wessinghage@kgu.de

Ricarda Wessinghage | idw
Weitere Informationen:
http://www.kgu.de
http://www.kgu.de/neurochirurgie/

Weitere Berichte zu: Neurochirurgie

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten
23.03.2017 | Deutsche Gesellschaft für Ultraschall in der Medizin (DEGUM)

nachricht Herzultraschall: Die dritte Dimension
21.03.2017 | Universitätsklinik der Ruhr-Universität Bochum - Herz- und Diabeteszentrum NRW Bad Oeynhausen

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen