Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen passen sich ultraschnell an die Schwerelosigkeit an

28.02.2017

Innerhalb einer Minute passen sich Säugetierzellen vollständig an die Schwerelosigkeit an. Echtzeitmessungen auf der Internationalen Raumstation ISS belegen, dass Zellen ultraschnell veränderte Schwerkraftverhältnisse ausgleichen. Dieser erstmalige Nachweis gelingt einem internationalen Team unter der Leitung von Wissenschaftlern der Universität Zürich.

Die Zellen von Säugetieren sind optimal an die Schwerkraft angepasst. Doch wie reagieren sie, wenn die irdische Anziehungskraft wegfällt? Bis anhin haben viele Experimente Zellveränderungen – nach Stunden oder Tagen in der Schwerelosigkeit – nachgewiesen.


Frontplatte der Triple Lux A Experiment-Apparatur

C. Thiel und Airbus DS

Dennoch sind Astronauten nach langem Aufenthalt im Weltall ohne gesundheitliche Probleme auf die Erde zurückgekehrt. Es stellt sich deshalb die Frage, inwiefern Zellen fähig sind, sich Änderungen der Schwerkraft anzupassen.

Nun zeigen UZH-Wissenschaftler erstmals anhand von Echtzeitmessungen auf der ISS, dass Zellen äusserst schnell auf veränderte Schwerkraftverhältnisse reagieren und ihre Funktion aufrechterhalten können. Sie erbringen damit auch den direkten Nachweis, dass bestimmte Zellfunktionen an die Schwerkraft gekoppelt sind.


Versuchsablauf und Messung auf der ISS

Im Gegensatz zu Weltraumexperimenten, deren Analysen im Anschluss auf der Erde durchgeführt worden sind, ging das Team um die UZH-Wissenschaftler Oliver Ullrich und Cora Thiel einen anderen Weg. Sie richteten ihr Versuchsdesign auf die Durchführung und direkte Messung im Weltall aus:

Vom Auftauen der Versuchszellen bis zu den Messungen führte ESA-Astronautin Samantha Cristoforetti alle Abläufe direkt im Labor auf der ISS durch. Die auf der ISS gemessenen Daten wurden dann zur Erde übertragen. Rigorose interne und externe Kontrollen schlossen alle ausser die Schwerkraft betreffenden Einflüsse aus.


Zelladaptation innerhalb von 42 Sekunden

Das Forscherteam untersuchte anhand des sogenannten oxidativen Burst – einem evolutionär alten Mechanismus zur Abtötung von Bakterien durch Abwehrzellen – wie Rattenzellen auf Änderungen der Gravitation reagierten. Unter Zuhilfenahme von Zentrifugen veränderte Samantha Cristoforetti auf der ISS die Schwerkraftverhältnisse und das Team im Kontrollzentrum konnte dadurch in Echtzeit verfolgen, wie die Zellen darauf reagierten.

«Nämlich ultraschnell», so Oliver Ullrich, Professor am Anatomischen Institut der Universität Zürich. «Die Immunabwehr brach sofort nach Eintritt der Schwerelosigkeit ein, die Abwehrzellen erholten sich aber überraschenderweise innerhalb von 42 Sekunden wieder vollständig.»

Aus dem direkten Nachweis einer innerhalb einer Minute abgeschlossenen, schnellen und vollständigen Anpassung an die Schwerelosigkeit stellt sich für Oliver Ullrich und Cora Thiel die Frage, ob nicht bisherige nach Stunden oder Tagen gemessene Zellveränderungen ebenfalls die Folgen eines Anpassungsprozesses sind.


Positive Nachricht für Astronauten

«Es scheint paradox: Zellen sind fähig, sich ultraschnell an die Schwerelosigkeit anzupassen. Aber sie waren ihr in der Entwicklungsgeschichte des irdischen Lebens nie ausgesetzt», sagt Cora Thiel. «Die Ergebnisse stellen daher weitere Fragen hinsichtlich der Robustheit des Lebens und seiner erstaunlichen Anpassungsfähigkeit.» In jedem Falle aber ist laut Oliver Ullrich das Ergebnis des ISS-Experiments eine gute Nachricht für die bemannte Raumfahrt: «Es besteht die Hoffnung, dass unsere Zellen mit der Schwerelosigkeit viel besser zurechtkommen, als bisher angenommen.»


Literatur:

Cora S. Thiel, Diane de Zélicourt, Svantje Tauber, Astrid Adrian, Markus Franz, Dana M. Simmet, Kathrin Schoppmann, Swantje Hauschild, Sonja Krammer, Miriam Christen, Gesine Bradacs, Katrin Paulsen, Susanne A. Wolf, Markus Braun, Jason Hatton, Vartan Kurtcuoglu, Stefanie Franke, Samuel Tanner, Samantha Cristoforetti, Beate Sick, Bertold Hock & Oliver Ullrich. Rapid adaptation to microgravity in mammalian macrophage cells. Scientific Reports 7, Article number: 43 (2017). February 27, 2017. DOI: 10.1038/s41598-017-00119-6

http://rdcu.be/pCOF


Weltraumexperiment


Das von Prof. Oliver Ullrich und Dr. Cora Thiel verwendete Forschungsmaterial wurde am 14. April 2015 mit einer Falcon-9-Rakete und dem Dragon-Raumschiff auf der SpaceX-CRS-6-Mission zur ISS gebracht. Die Forschungsmission wurde von der Europäischen Raumfahrtagentur ESA und dem Deutschen Zentrum für Luft- und Raumfahrt DLR finanziert.

Die ESA-Astronautin Samantha Cristoforetti führte die Versuche nach jahrelanger Vorbereitung im BIOLAB des COLUMBUS-Moduls auf der ISS durch. Die Universität Zürich leitete das Experiment in Zusammenarbeit mit der Otto-von-Guericke-Universität Magdeburg, der Technischen Universität München, der Hochschule Luzern, der Europäischen Raumfahrtagentur ESA, dem Deutschen Zentrum für Luft- und Raumfahrt DLR und dem Kennedy Space Center der NASA.

Kontakt:

Prof. Dr.med. Dr.rer.nat. Oliver Ullrich

Dr. rer.nat. Cora Thiel
Anatomisches Institut

Universität Zürich

Tel. +41 44 635 40 60

E-Mail: oliver.ullrich@uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2017/Zellen-Anpassung-Schwerelosig...

Nathalie Huber | Universität Zürich

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Künstlicher Leberfleck als Frühwarnsystem
19.04.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Weltweit einmalig: Korrekte Diagnose der Lungentuberkulose in nur drei Tagen
16.04.2018 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics