Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Müll-DNA nicht so nutzlos wie gedacht

23.07.2014

Etwa 75 Prozent der vermeintlich funktionslosen DNA des menschlichen Genoms wird in so genannte nichtkodierende RNAs (Ribonukleinsäuren) übersetzt. Ihre Funktion ist bislang noch weitgehend unbekannt.

Forscher des Helmholtz-Zentrums für Umweltforschung (UFZ) konnten nun gemeinsam mit Kollegen des Fraunhofer-Instituts für Zelltherapie und Immunologie (IZI) und der Universität Leipzig zeigen, dass die Herstellung nichtkodierender RNAs präzise reguliert wird. Sie vermuten, das nichtkodierende RNAs bei der Regulation zellulärer Prozesse oder der veränderten Immunantwort nach Einwirkung von Umweltgiften eine Rolle spielen könnten.

Rund zwei Prozent des menschlichen Genoms dienen als Bauplan für Proteine (Eiweiße), die als molekulare Maschinen in unseren Körperzellen wichtige Funktionen übernehmen. Der Rest des Genoms – immerhin 98 Prozent – ist ein mehr oder minder unbeschriebenes Blatt.

Die Bereiche, die nicht für Proteine kodieren, werden auch als Müll-DNA bezeichnet. Doch sind sie tatsächlich unnötiger Ballast? „Das ist eine der zentralen Fragen, die die Genomforschung derzeit umtreibt“, sagt Dr. Jörg Hackermüller, Bioinformatiker am Helmholtz-Zentrum für Umweltforschung GmbH (UFZ). „Auf der Genom-Landkarte sind noch große weiße Flecken – hier gibt es noch viel zu entdecken.“

Bereits im Jahr 2007 konnte Hackermüller gemeinsam mit zahlreichen Kollegen in einer im Fachmagazin Nature publizierten Studie zeigen, dass nicht nur zwei Prozent des Genoms in RNA übersetzt werden – eine Vorlage, die normalerweise der Herstellung von Proteinen dient – sondern nahezu das gesamte Genom, also auch solche Bereiche, die überhaupt nicht als Bauplan für Proteine genutzt werden.

Hackermüller: „Aus diesem Befund entstand eine lebhafte Diskussion darüber, ob es dies durch Zufallsereignisse oder Fehler in der Regulation zellulärer Prozesse verursacht sein könnte. Doch ich zweifle daran, dass die Natur so verschwenderisch mit Ressourcen umgeht und so große Mengen an RNA sinnlos herstellt.“

In der aktuellen, im Fachmagazin „Genome Biology“ veröffentlichten Studie konnten Hackermüller und sein Team in Kooperation mit Prof. Friedemann Horn und Prof. Peter F. Stadler von der Universität Leipzig und dem Fraunhofer-Institut für Zelltherapie und Immunologie IZI nun eine weitere Wissenslücke schließen:

Die Übersetzung nichtkodierender Regionen im Genom wird durch zelluläre Signalwege präzise reguliert – und das in großem Stil: Bis zu 80 Prozent der RNA-Kopien waren nichtkodierend. „Ein solches Ausmaß hatten wir nicht erwartet“, sagt Hackermüller. „Das spricht nicht für ein Zufallsprodukt – höchstwahrscheinlich kommt der nichtkodierenden RNA eine ähnlich wichtige Funktion zu wie der proteinkodierenden RNA.“

Weiterhin haben die Forscher eine neue Spezies nichtkodierender RNAs entdeckt, die so genannte Makro-RNA. Sie ist um das 50- bis 200-fache größer als übliche proteinkodierende RNA. „Bemerkenswert ist, dass Teile dieser Makro-RNAs von den Säugetieren bis hin zu den Vögeln und Reptilien konserviert sind“, sagt Horn. „In aggressiven Formen eines Gehirntumors werden mehrere Makro-RNAs zudem deutlich aktiver produziert als in Tumoren mit guter Prognose. Dies ist ein weiterer Hinweis darauf, dass nichtkodierende Makro-RNAs in zellulären Abläufen eine wichtige Rolle spielen.“

Hackermüller vermutet, dass nichtkodierende RNAs auf epigenetischer Ebene eine wichtige Funktion haben, beispielsweise als eine Art zelluläres Langzeitgedächtnis: „Dies könnte auch erklären, warum die körperlichen Auswirkungen durch Belastung mit schädlichen Umweltsubstanzen häufig erst Jahre später auftreten.“ In zukünftigen Untersuchungen wollen Hackermüller und sein Team daher prüfen, welchen Einfluss Umweltschadstoffe auf das Vorkommen nichtkodierender RNAs in Immunzellen haben. Nicole Silbermann

Publikation: Hackermüller J, Reiche K, Otto C, Hösler N, Blumert C, Brocke-Heidrich C, Böhlig L, Nitsche A, Kasack K, Ahnert P, Krupp W, Engeland K, Stadler PF, Horn F. Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro non-protein coding RNAs. Genome Biology 15:R48. 2014.
http://genomebiology.com/2014/15/3/R48

Weitere Informationen:
Helmholtz-Zentrum für Umweltforschung (UFZ)
Department Proteomik
Helmholtz-Hochschul-Nachwuchsgruppe Bioinformatics & Transcriptomics
Dr. Jörg Hackermüller
0341 235 1561
http://www.ufz.de/index.php?de=30930

Pressekontakt:
Helmholtz-Zentrum für Umweltforschung
Tilo Arnhold, Susanne Hufe (UFZ-Pressestelle)
Telefon: 0341 235-1635, -1635
http://www.ufz.de/index.php?de=640
oder:
Fraunhofer Institut für Zelltherapie und Immunologie (IZI)
Jens Augustin
Telefon: 0341 355369320
http://www.izi.fraunhofer.de/presse.html

Links:
ENCODE Nature 2007: ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447:799-816, 2007.
http://www.nature.com/nature/journal/v447/n7146/full/nature05874.html
http://www.izi.fraunhofer.de/uploads/media/070614_Genetischer_Muell_als_Ordnungs...

Im Helmholtz-Zentrum für Umweltforschung (UFZ) erforschen Wissenschaftler die Ursachen und Folgen der weit reichenden Veränderungen der Umwelt. Sie befassen sich mit Wasserressourcen, biologischer Vielfalt, den Folgen des Klimawandels und Anpassungsmöglichkeiten, Umwelt- und Biotechnologien, Bioenergie, dem Verhalten von Chemikalien in der Umwelt, ihrer Wirkung auf die Gesundheit, Modellierung und sozialwissenschaftlichen Fragestellungen. Ihr Leitmotiv: Unsere Forschung dient der nachhaltigen Nutzung natürlicher Ressourcen und hilft, diese Lebensgrundlagen unter dem Einfluss des globalen Wandels langfristig zu sichern. Das UFZ beschäftigt an den Standorten Leipzig, Halle und Magdeburg 1.100 Mitarbeiter. Es wird vom Bund sowie von Sachsen und Sachsen-Anhalt finanziert. http://www.ufz.de/

Das Fraunhofer-Institut für Zelltherapie und Immunologie IZI erforscht und entwickelt spezielle Problemlösungen an den Schnittstellen von Medizin, Biowissenschaften und Ingenieurswissenschaften. Das Institut betreibt in diesem Rahmen Auftragsforschung für biotechnologische, pharmazeutische und medizintechnische Unternehmen, Kliniken, Diagnostische Labore sowie Forschungseinrichtungen. Innerhalb der Geschäftsfelder Wirkstoffe, Zelltherapie, Diagnostik und Biobanken entwickelt, optimiert und validiert das Institut Verfahren, Materialien und Produkte. Die Kernkompetenzen des Instituts liegen im Bereich der Regenerativen Medizin, insbesondere in den Indikationsbereichen Onkologie, Ischämie, autoimmune und entzündliche Erkrankungen sowie Infektionskrankheiten. Das Institut ist kliniknah orientiert und übernimmt Qualitätsprüfungen sowie die GMP-konforme Herstellung von klinischen Prüfmustern. Darüber hinaus unterstützt das Institut Partner bei der Erlangung von Herstellungsgenehmigungen und Zulassungen. http://www.izi.fraunhofer.de/

Tilo Arnhold | UFZ News

Weitere Berichte zu: ENCODE Helmholtz-Zentrum IZI Müll-DNA Proteine RNA RNAs UFZ Umweltforschung Zelltherapie

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics