Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht knipst Nanoschalter an und aus

26.11.2007
Ultraschnelle Elektronenmikroskopie macht schaltbare Nanokanäle sichtbar

Mikroskopisch kleine Spalte tun sich in einem Kriställchen auf und schließen sich wieder - auf Befehl. Forschern um Ahmed H. Zewail gelang es mit Hilfe der so genannten ultraschnellen Elektronenmikroskopie (UEM), Feststoffe bei dieser Übung zu beobachten, wie sie in der Zeitschrift Angewandte Chemie berichten. Solche schaltbaren Nanokanäle könnten für eine zukünftige Nanoelektronik und für nanoskopische "Maschinen" von Interesse sein.

Zewail und sein Team vom California Institute of Technology (Pasadena, USA) sind bekannt für ihre "ultraschnelle" Wissenschaft: Zewail erhielt 1999 den Chemie-Nobelpreis die Entwicklung ultraschneller Laser-Techniken, mit denen die Bewegung einzelner Atome in einem Molekül während einer chemischen Reaktion beobachtet werden können. Jüngste Entwicklung aus Zewails Labors ist die ultraschnelle Elektronenmikroskopie. Es handelt sich dabei um die Kombination aus einem Femtosekunden-optischen System (eine Femtosekunde = 10-15 Sekunden) und einem hochauflösenden Elektronenmikroskop. Ergebnis ist ein neues Instrument mit extrem hoher sowohl räumlicher als auch zeitlicher Auflösung.

Zewail und sein Team haben nun entdeckt, dass nadelförmige Mikro-Kristalle aus Kupfer und der organischen Verbindung TCNQ (7,7,8,8-tetracyanochinodimethan, C12H4N4 ), ein kristalliner quasi-eindimensionaler Halbleiter, spezielle optomechanische Phänomene zeigt, die für nanoelektronische Anwendungen interessant sein könnten. Wie sich zeigte, werden diese Nadeln unter Bestrahlung mit Laserpulsen im Mikroskop länger (aber nicht breiter). Wird die Bestrahlung ausgeschaltet, ziehen sie sich wieder zusammen. Besonders gut sichtbar ist der Effekt, wenn eine Kristallnadel durch die Erschütterung eines kurzen starken Laserpulses gebrochen wurde: An der Bruchstelle entsteht ein kleiner Spalt von einigen zehn bis hundert Nanometern. Wenn sich der Kristall unter Bestrahlung ausdehnt, schließt sich dieser nanoskopische Kanal, beim Zusammenziehen des Kristalls ist er wieder da. Das Phänomen ist reversibel, wie mit dem UEM bestimmt werden konnte.

Warum aber recken und strecken sich die Mikrokristalle im Licht? Die negativ geladenen TCNQ-Ionen liegen im Kristall so, dass ihre zentralen flachen Sechsringe aufeinander gestapelt sind, in Richtung der Längsausdehnung der Nadel. Die Energie der Laserpulse regt Elektronen an, ein Teil wird zurückübertragen, so dass ungeladene TCNQ-Moleküle entstehen. In dieser ungeladenen Form ist die gestapelte Anordnung nicht mehr günstig. Sie beanspruchen jetzt mehr Platz, die Kristallnadel wird länger. Das Ausmaß der Dehnung hängt von der Stärke der absorbierten Energie ab.

"Unsere grundlegenden in situ-Untersuchungen mit dem UEM, mit denen wir das Verhalten nanoskopischer Materialien in Raum und Zeit beobachten können, eröffnen neue Forschungsfelder, vor allem für die Materialwissenschaften, die Nanotechnologie und die Biologie," zeigt sich Zewail überzeugt.

Angewandte Chemie: Presseinfo 47/2007

Autor: Ahmed H. Zewail, California Institute of Technology, Pasadena (USA), http://www.zewail.caltech.edu/index.html

Angewandte Chemie 2007, 119, No. 48, 9366-9370, doi: 10.1002/ange.200704147

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.zewail.caltech.edu/index.html
http://www.gdch.de/
http://presse.angewandte.de

Weitere Berichte zu: Bestrahlung Elektronenmikroskopie Kristall Laserpuls UEM

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fraunhofer IFAM erweitert den Forschungsbereich »Beschichtungen für Bewuchs- und Korrosionsschutz«
11.01.2017 | Fraunhofer IFAM

nachricht Schrauben mit Köpfchen
10.01.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften

Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab

17.01.2017 | Biowissenschaften Chemie