Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wärmespannungen verringern Bauteileigenschaften

25.04.2002


Schnelligkeit ist der große Vorteil beim Laserstrahlsintern von Bauteilen. Pulverkörnchen aus Metall verschmelzen in wenigen Augenblicken zur gewünschten Form. Doch das Verfahren ist noch nicht völlig verstanden, und die Qualität der Produkte kann verbessert werden. Grundlagenuntersuchungen am Lehrstuhl für Fertigungstechnologie von Prof. Dr. Manfred Geiger, die auf die Temperaturverteilung während des Bauprozesses konzentriert sind, werden von der Deutschen Forschungsgemeinschaft für weitere zwei Jahre gefördert. Projektbearbeiter ist Dipl.-Ing. Frank Niebling.

Das Direkte Metall-Laserstrahlsintern (DMLS) ist ein generatives Fertigungsverfahren: Dreidimensionale Bauteile werden schichtweise aufgebaut. Das Metallpulver in der jeweils obersten Schicht wird mit der Energie eines Laserstrahls lokal aufgeschmolzen, wodurch eine definierte Struktur entsteht. Funktionsprototypen wie etwa Leiträder von Drehmomentwandlern oder Werkzeuge für den Kunststoffspritzguss können auf diese Weise hergestellt werden. Vor allem im schnellen Prototypen- und Vorserienbau (Rapid Prototyping) sind solche innovativen Fertigungskonzepte sehr gefragt, da sie die Entwicklungszeiten für neue Produkte verkürzen können.

Das DMLS-Verfahren ist technisch nicht vollständig ausgereift. Der Prozess ist teilweise instabil, wofür Wärmespannungen verantwortlich gemacht werden, die durch den Bauprozess eingebracht werden. Infolgedessen kommt es vor, dass sich Schichten von Bauteilen noch während des Aufbauprozesses voneinander trennen. Nach der generativen Fertigung verbleiben Eigenspannungen im Werkstück, die sich bei der Weiterverarbeitung als Verzug bemerkbar machen können. Die Teile verziehen sich, wenn sie z. B. bei einer Infiltration mit Lötwerkstoff thermisch belastet werden.

Hohe Energie auf engem Raum
Die Wärmespannungen sind darauf zurückzuführen, dass der Laserstrahl hohe Energie auf sehr begrenzten Raum einbringt. So entstehen während des Bauprozesses große Temperaturdifferenzen innerhalb des Bauteils. Experimentell kann eine solche Temperaturverteilung wegen des hohen Temperaturgradienten und des schnellen Prozessablaufs nur bedingt erfasst werden. Für ein vertieftes Prozessverständnis ist die Kenntnis dieser Temperaturfelder aber unverzichtbar.

Auf dieses Problemfeld ist das DFG-geförderte Projekt zugeschnitten. Um die Abläufe beim Laserstrahlsintern besser zu verstehen, wurde ein numerisch-experimentell gekoppelter Ansatz gewählt. Der Laserstrahlsinterprozess wurde über ein maskroskopisches Finite-Elemente-Modell abgebildet. Die Strahl-Stoff-Wechselwirkungen wurden bereits erfasst und implementiert. Das Modell kann den schichtweisen Aufbau und den Energieeintrag durch den Laserstrahl abbilden. In der Wiedergabe des Temperaturfelds zeigte sich beim Vergleich mit experimentell gewonnenen Ergebnissen eine sehr gute Übereinstimmung.

Die numerische Simulation ermöglicht es nun, Prozesseinflussgrößen zu separieren, um die Auswirkungen auf derartige Temperaturverläufe bzw. auf die Eigenspannungsentwicklung zu untersuchen. Dies soll wesentlich dazu beitragen, DMLS-Prozesse zu stabilisieren und zu optimieren.

Weitere Informationen
Prof. Dr.-Ing. Manfred Geiger, Dipl.-Ing. Frank Niebling
Tel.: 09131/85 -27140, -23246 niebling@lft.uni-erlangen.de

Gertraud Pickel | idw

Weitere Berichte zu: Bauprozess Bauteil Laserstrahl Schicht Wärmespannung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen