Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wärmespannungen verringern Bauteileigenschaften

25.04.2002


Schnelligkeit ist der große Vorteil beim Laserstrahlsintern von Bauteilen. Pulverkörnchen aus Metall verschmelzen in wenigen Augenblicken zur gewünschten Form. Doch das Verfahren ist noch nicht völlig verstanden, und die Qualität der Produkte kann verbessert werden. Grundlagenuntersuchungen am Lehrstuhl für Fertigungstechnologie von Prof. Dr. Manfred Geiger, die auf die Temperaturverteilung während des Bauprozesses konzentriert sind, werden von der Deutschen Forschungsgemeinschaft für weitere zwei Jahre gefördert. Projektbearbeiter ist Dipl.-Ing. Frank Niebling.

Das Direkte Metall-Laserstrahlsintern (DMLS) ist ein generatives Fertigungsverfahren: Dreidimensionale Bauteile werden schichtweise aufgebaut. Das Metallpulver in der jeweils obersten Schicht wird mit der Energie eines Laserstrahls lokal aufgeschmolzen, wodurch eine definierte Struktur entsteht. Funktionsprototypen wie etwa Leiträder von Drehmomentwandlern oder Werkzeuge für den Kunststoffspritzguss können auf diese Weise hergestellt werden. Vor allem im schnellen Prototypen- und Vorserienbau (Rapid Prototyping) sind solche innovativen Fertigungskonzepte sehr gefragt, da sie die Entwicklungszeiten für neue Produkte verkürzen können.

Das DMLS-Verfahren ist technisch nicht vollständig ausgereift. Der Prozess ist teilweise instabil, wofür Wärmespannungen verantwortlich gemacht werden, die durch den Bauprozess eingebracht werden. Infolgedessen kommt es vor, dass sich Schichten von Bauteilen noch während des Aufbauprozesses voneinander trennen. Nach der generativen Fertigung verbleiben Eigenspannungen im Werkstück, die sich bei der Weiterverarbeitung als Verzug bemerkbar machen können. Die Teile verziehen sich, wenn sie z. B. bei einer Infiltration mit Lötwerkstoff thermisch belastet werden.

Hohe Energie auf engem Raum
Die Wärmespannungen sind darauf zurückzuführen, dass der Laserstrahl hohe Energie auf sehr begrenzten Raum einbringt. So entstehen während des Bauprozesses große Temperaturdifferenzen innerhalb des Bauteils. Experimentell kann eine solche Temperaturverteilung wegen des hohen Temperaturgradienten und des schnellen Prozessablaufs nur bedingt erfasst werden. Für ein vertieftes Prozessverständnis ist die Kenntnis dieser Temperaturfelder aber unverzichtbar.

Auf dieses Problemfeld ist das DFG-geförderte Projekt zugeschnitten. Um die Abläufe beim Laserstrahlsintern besser zu verstehen, wurde ein numerisch-experimentell gekoppelter Ansatz gewählt. Der Laserstrahlsinterprozess wurde über ein maskroskopisches Finite-Elemente-Modell abgebildet. Die Strahl-Stoff-Wechselwirkungen wurden bereits erfasst und implementiert. Das Modell kann den schichtweisen Aufbau und den Energieeintrag durch den Laserstrahl abbilden. In der Wiedergabe des Temperaturfelds zeigte sich beim Vergleich mit experimentell gewonnenen Ergebnissen eine sehr gute Übereinstimmung.

Die numerische Simulation ermöglicht es nun, Prozesseinflussgrößen zu separieren, um die Auswirkungen auf derartige Temperaturverläufe bzw. auf die Eigenspannungsentwicklung zu untersuchen. Dies soll wesentlich dazu beitragen, DMLS-Prozesse zu stabilisieren und zu optimieren.

Weitere Informationen
Prof. Dr.-Ing. Manfred Geiger, Dipl.-Ing. Frank Niebling
Tel.: 09131/85 -27140, -23246 niebling@lft.uni-erlangen.de

Gertraud Pickel | idw

Weitere Berichte zu: Bauprozess Bauteil Laserstrahl Schicht Wärmespannung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie