Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entwicklung neuer metallischer Superlegierungen für Höchsttemperaturen

20.03.2007
Mit der Entwicklung und Charakterisierung von metallischen Werkstoffen für Anwendungen bei extrem hohen Temperaturen, wie sie bei Kraftwerksturbinen, Flugzeugtriebwerken oder auch in automobilen Verbrennungsmaschinen auftreten können, befassen sich in den nächsten Jahren Wissenschaftler von fünf deutschen Universitäten, unter ihnen auch der Lehrstuhl Metallische Werkstoffe (Professor Dr.-Ing. Uwe Glatzel) der Universität Bayreuth.

Die DFG fördert diese Forschergruppe, an der weiterhin Wissenschaftler aus Magedeburg, Braunschweig, Bochum und Siegen beteiligt sind, in den nächsten drei Jahren mit rund 1,6 Millionen Euro. Die geplante Gesamtlaufzeit beträgt sechs Jahre.

Bayreuth (UBT). Mit der Entwicklung und Charakterisierung von metallischen Werkstoffen für Anwendungen bei extrem hohen Temperaturen, wie sie bei Kraftwerksturbinen, Flugzeugtriebwerken oder auch in automobilen Verbrennungsmaschinen auftreten können, befassen sich in den nächsten Jahren Wissenschaftler von fünf deutschen Universitäten, unter ihnen auch der Lehrstuhl Metallische Werkstoffe (Professor Dr.-Ing. Uwe Glatzel) der Universität Bayreuth. Die Deutschen Forschungsgemeinschaft (DFG) fördert diese Forschergruppe 727 "Beyond Nickelbase Superalloys", an der weiterhin Wissenschaftler aus Magedeburg, Braunschweig, Bochum und Siegen beteiligt sind, in den nächsten drei Jahren mit rund 1,6 Millionen Euro. Die geplante Gesamtlaufzeit beträgt sechs Jahre.

Werkstoffe, die Oberflächentemperaturen unter Hochtemperaturbedingungen bei gleichzeitiger hoher mechanischer Belastung in Luftatmosphäre dauerhaft widerstehen können, werden Superlegierungen (Superalloys) genannt. Diese sind nicht nur aus volkswirtschaftlichen Gesichtspunkten, sondern auch unter dem Aspekt der Schonung fossiler Ressourcen und der Verringerung der Schadstoffbelastung von großem Interesse. Die bereits seit einigen Jahrzehnten industriell verwendeten Superlegierungen auf Basis von Nickel ermöglichen heute Einsatztemperaturen bis 1.100°C. Daher ist das übergeordnete Projektziel die Entwicklung neuer Legierungen, die eine Einsatztemperatur im Bereich von bis zu 1.400°C ermöglichen, um einen gesteigerten Wirkungsgrad und somit erhöhte Leistung von Turbinen und ähnlichen Anwendungen zuzulassen.

Zunächst ergibt sich für die Werkstoffwissenschaft und angrenzende Disziplinen die reizvolle Aufgabe, mit metallurgischen bzw. metallphysikalischen Prinzipien nach solchen Legierungen zu suchen, die das bereits angesprochene Anforderungsprofil erfüllen können. Andererseits müssen diese neu zu entwickelnden Legierungssysteme eingehend charakterisiert werden, um ihre Eignung hinsichtlich der gestellten Aufgabe unter Beweis zu stellen und im Rückschluss mit den Legierungsentwicklern optimierte Lösungen zu finden.

Dieser Aufgabe wird mit der Zusammensetzung der Forschergruppe Rechnung getragen: während sich zwei Teams aus Magdeburg (Prof. Dr.-Ing. Martin Heilmaier, zugleich Koordinator) und Braunschweig (Prof. Dr. Joachim. Rösler) mit der Entwicklung zweier neuartiger Legierungssysteme (auf Molybdän- bzw. Kobalt-Basis) beschäftigen, übernehmen die drei weiteren beteiligten Forschergruppen die detaillierte Charakterisierung der relevanten Eigenschaften.

So werden an der Universität Bayreuth unter der Leitung von Professor Dr.-Ing. Uwe Glatzel die benötigten physikalischen Eigenschaften wie z.B. die Wärmeausdehnung und -leitfähigkeit bestimmt sowie das so genannte "Kriechverhalten" - die langsame, plastische Verformung der Werkstoffe bei hohen Temperaturen unter mechanischer Belastung - untersucht.

An der Ruhruniversität Bochum (Professor Dr.-Ing. Gunther Eggeler) steht die quantitative Analyse des Gefüges (Mikrostruktur), insbesondere mit hoher Auflösung im Nanometerbereich mittels der analytischen Transmissionselektronenmikroskopie im Vordergrund. An der Universität Siegen wird schließlich das Phänomen der Hochtemperaturoxidation, d.h. die Bildung von Oxidschichten auf dem Werkstoff unter hohen Temperaturen, experimentell charakterisiert und physikalisch begründet beschrieben.

Ansprechpartner:
Professor Dr.-Ing. Uwe Glatzel
Tel. (0921) 55-55 55
e-mail: uwe.glatzel@uni-bayreuth.de

Jürgen Abel | idw
Weitere Informationen:
http://www.uni-bayreuth.de/departments/metalle

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise