Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Massgeschneiderte" Polymere für die Industrie

14.11.2006
Kunststoffzusätze für Hochleistungsbeton unter der Lupe von Empa-Forschern

In Zusammenarbeit mit der Industrie erforscht die Empa Polymere, welche die Fliesseigenschaften von Beton verbessern. Die wenige Nanometer grossen Moleküle verbessern die Qualität von Sichtbeton und eröffnen neue architektonische Gestaltungsmöglichkeiten.

Kaum vorstellbar, dass Teilchen kaum grösser als der Millionste Teil eines Millimeters riesige Gebäudestrukturen massgeblich beeinflussen, verschönern oder gar erst ermöglichen. Schon seit Jahrzehnten werden beim Betonmischen nicht nur Zement und Wasser zugegeben, sondern auch chemische Zusatzmittel. Diese verbessern die Fliesseigenschaften des Betons und lassen ihn innert nützlicher Frist aushärten. Seit rund 15 Jahren wird intensiv an der chemischen Zusammensetzung einer neuen Generation dieser Zusatzmittel geforscht.

Der "gutmütige Beton"

Die Empa versucht nun, mit vom weltweit grössten Chemiekonzern BASF hergestellten Polymeren Struktur-Wirkungs-Beziehungen zu ermitteln, die es Industriechemikern künftig erleichtern, Zusatzmittel zielgerichtet zu optimieren. Die Empa-Projektleiter Frank Winnefeld und Lorenz Holzer von der Abteilung "Beton/Bauchemie" weisen auf die Schwierigkeiten des Unterfangens hin: "Wir wollen einen Hochleistungsbeton, der wie Honig in die Abschalungen fliesst und sich trotzdem innert nützlicher Frist verfestigt." Eine grosse Herausforderung sei, dass die meisten Polymere äusserst empfindlich auf unterschiedliche Zusammensetzungen von Zement reagieren - und sich die Zemente der meisten Anbieter oft deutlich unterscheiden. Ziel sei deshalb ein universell einsetzbarer Polymerzusatz, führt Winnefeld aus. Und was bringt die Forschung der Bauindustrie? "Ein gutmütiger Beton mit besseren Fliesseigenschaften lässt neue architektonische Strukturen zu und steigert die Sichtbetonqualität", so der Empa-Fachmann. Gleichzeitig erhöhe sich auch die Lebensdauer des Betons.

Das Funktionsprinzip der winzigen Polymere wird an der Empa unter anderem mit dem Rasterkraftmikroskop untersucht. Auf der Oberfläche der Zementpartikel lagern sich unzählige Polymermoleküle an. Da diese negativ geladen sind, stossen sich die Zementbestandteile gegenseitig ab und verteilen sich gleichmässig im Wasser-Zement-Zuschlag-Gemisch - das Material verflüssigt sich.

Mit Polymerzusätzen zu futuristischer Architektur
Die Bestrebungen der Empa gehen aber noch weiter. "Wir wollen auch verstehen, weshalb welcher Kunststoffzusatz mit welchem Zement wie reagiert", erklärt Winnefeld. Dazu wird erstmals in diesem Forschungsbereich die so genannte Cryo-Elektronenmikroskopie angewendet. An diesem Spezialmikroskop der ETH Zürich werden innert weniger Millisekunden Zementsuspensionen von wenigen Nanometern Grösse unter hohem Druck schockgefroren. Die Struktur der Suspension bleibt durch den Temperaturschock erhalten, was genauere Untersuchungen an den Polymeren zulässt. Daraus erhoffen sich die Empa-Forscher schon bald ein besseres Verständnis über die Wirkungsweise verschiedener Polymere, was diese als Beton-Additive für die Industrie noch attraktiver machen würde.

Die Zusammenarbeit mit der Industrie nimmt an der Empa-Abteilung "Beton/Bauchemie" seit je einen grossen Stellenwert ein, vor allem mit Firmen der Schweizer Bauchemiebranche. Beispielsweise arbeiteten die Empa-Ingenieure mit den Schweizer Zusatzmittelproduzenten Sika und Elotex zusammen; mit dem Zementproduzenten Holcim wurden bereits mehrere erfolgreiche Projekte durchgeführt. Und die Partnerschaft mit der BASF hat vor zwei Jahren zu verbesserten polymeren Beton- und Zementzusatzmitteln geführt, die auch bereits am Bau erhältlich sind. Über allfällige weitere Projekte mit dem deutschen Chemieunternehmen wird derzeit diskutiert. Die erfolgreichen Industriepartnerschaften illustrieren einmal mehr die Brückenfunktion der Empa zwischen Forschung und praktischer Anwendung, über die das erarbeitete Wissen möglichst schnell und effizient in für Wirtschaft und Gesellschaft nutzbare Innovationen umgesetzt wird.

Ihr Know-how in der Bauchemie bringt die Empa - gemeinsam mit weiteren, zumeist in der Schweiz arbeitenden Forschungsgruppen aus Industrie und Hochschule - auch im Nationalen Forschungsnetzwerk "CEMNET@ch" ein. An einem Workshop wurde Anfang September an der Empa-Akademie in Dübendorf unter anderem über die Verbesserung der Eigenschaften von Mörtel und Beton durch Polymere diskutiert. Der regelmässige Austausch mit Experten aus der Industrie sowie mit Forschungsinstitutionen wie der ETH Lausanne und die damit einhergehende Vernetzung ist mit ein Grund für die weltweit führende Position der schweizerischen Betonzusatzmittelforschung. Dank neuartiger Polymerzusätze und einem qualitativ hochwertigen Sichtbeton dürften Stararchitekten wie Herzog & de Meuron also schon bald neue Möglichkeiten haben, Entwürfe für Bauwerke mit futuristischen Formen in die Praxis umzusetzen.

Autor: Lukas Herzog

Redaktion und Bildbezug: Sabine Voser Möbus, Tel 044 823 45 99, sabine.voser@empa.ch

Weitere Informationen
Dr. Frank Winnefeld, Abteilung Beton/Bauchemie, Tel. 044 823 45 35, frank.winnefeld@empa.ch

Dr. Lorenz Holzer, Abteilung Beton/Bauchemie, Tel. 044 823 44 90, lorenz.holzer@empa.ch

Sabine Voser | idw
Weitere Informationen:
http://www.empa.ch

Weitere Berichte zu: Beton Fliesseigenschaft Polymer Zement Zusatzmittel

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics