Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was der Käferfuß verspricht, das hält er

23.10.2006
Forscher des Stuttgarter Max-Planck-Instituts für Metallforschung entwickeln zusammen mit der Gottlieb Binder GmbH in Holzgerlingen neuartiges Haftmaterial nach dem Vorbild von Insektenfußsohlen

Mikrohärchen mit Pilzkopf sind das Geheimnis eines neuen Haftmaterials, das Wissenschaftler des Max-Planck-Instituts für Metallforschung in Stuttgart entwickelt haben. Die spezielle Oberflächenstruktur ist von Käferfußsohlen inspiriert, also biomimetisch, und lässt das Material an glatten Wänden kleberfrei haften. Potenziellen Anwendungen reichen von wieder verwendbarem Klebeband bis hin zu Schuhsohlen für Kletterroboter und sind somit von großer technologischer Relevanz (Journal of the Royal Society Interface, 17. Oktober 2006).


Mikroskopische Aufnahme der biomimetischen Oberflächenstruktur des neuen Haftmaterials. Das von Insektenfußsohlen inspirierte Material (grün) haftet an Glas (blau). Bild: Max Planck-Institut für Metallforschung

Schon seit einiger Zeit ist bekannt, wie Insekten, Spinnen und Geckos zu dem bemerkenswerten Talent kommen, an Wänden oder Decken spazieren zu gehen - extrem dünne Härchen lassen ihre Füße regelrecht an der Wand kleben. Je größer das Tier, desto feiner diese Haare. Die im Verhältnis zu einer Fliege schweren Geckos wenden bei der Gelegenheit schon seit Millionen Jahren Nanotechnik an. Nach Erkenntnissen der Wissenschaftler des Max-Planck-Instituts für Metallforschung in Stuttgart ist die Form der Fasern auch ein bedeutender Faktor; besonders starke Haftung erzielen beispielsweise spatelförmige Haarenden.

Diese Entdeckungen entfachten große Erwartungen: Kann man die Struktur der Insektenfußsohlen einfach kopieren und schon bald entsprechende biomimetische, also von der Natur inspirierte, Haftmaterialien im Alltag wieder finden? Doch die Forscher des Max-Planck-Instituts für Metallforschung und der Gottlieb Binder GmbH in Holzgerlingen, einem Spezialisten für Befestigungssysteme, mussten einen langen Atem haben, denn die ersten Generationen der mit verschiedenen Methoden erzeugten Oberflächen hafteten schlecht.

... mehr zu:
»Haftmaterial »Metallforschung

Jetzt sind die Wissenschaftler bei der Nachahmung des biologischen Haftmechanismus einen großen Schritt weiter gekommen. Sie entwickelten ein Material, dessen biomimetische Mikrostruktur exzellente Hafteigenschaften bewirkt. Die Entwicklung der künstlichen Strukturen basierte auf der Untersuchung der Fußsohlen mehrerer Käferarten. Deren besonders starke Haftkraft beruht auf speziell geformten Härchen, die an winzige Pilze erinnern.

In den strengen Prüfungen, die Max-Planck-Forscher mit speziell für diesen Zweck entwickelten Messinstrumenten vornahmen, überzeugte das künstliche Haftsystem mit vielen Vorzügen. So hält es hunderte Anwendungen nacheinander durch, hinterlässt keine sichtbaren Spuren und regeniert sich vollständig von Verschmutzungen, wenn man es mit Seife wäscht. Die Forscher ermittelten, dass fünf Quadratzentimeter des Materials an Wänden mit glatten Oberflächen bis zu hundert Gramm schwere Gegenstände halten; an der Decke allerdings erheblich weniger. Glas oder poliertes Holz eignen sich gut als Unterlage, also glatte Strukturen - hingegen ist die Raufasertapete nicht gerade das Lieblingsterrain des Materials. "Aber Insekten haben auch Schwierigkeiten an Oberflächen mit feiner Rauigkeit zu laufen, dies ist ein grundsätzliches Problem des Haftmechanismus", erklärt der Projektleiter Stanislav Gorb.

Bei der Herstellung dient - wie beim Kuchenbacken - eine Form als Vorlage, in die gleichsam als Negativbild die gewünschte Oberfläche eingeprägt ist. Man füllt ein polymerisierendes Gemisch hinein, lässt es aushärten und trennt anschließend den Kunststoff von der Vorlage. Was hier so einfach klingt, war Ergebnis "langen Rumprobierens". Der Bau der Mikrostruktur-"Kuchenform" forderte die Forscher dabei am meistern heraus - wie das genau funktioniert, bleibt Betriebsgeheimnis. Aber auch die Optimierung der Polymer-Mischung brachte die Wissenschaftler ins Schwitzen; ist sie zu flüssig, fließt sie einfach aus der Form raus, ist sie zu viskos, gelangt sie gar nicht erst hinein.

Die potenzielle Verwendung erstreckt sich von einer Schutzfolie für empfindliche Gläser bis zu wieder benutzbaren Klebunterlagen - Kühlschrankmagnete ade, jetzt kommen die Mikrohärchen, die allerdings auch an Spiegel, Schrank und Scheibe haften. In industriellen Produktionsprozessen findet man das neue Material beispielsweise bald bei der Fertigung von Glas-Bauteilen. Darüber hinaus bewies es seine Leistungsfähigkeit auch schon in höheren Gewichtsklassen: Ein 120 Gramm schwerer Roboter konnte mit den künstlichen Haftfasern an der Fußsohle eine senkrechte Glaswand ersteigen (Daltorio et al. 2005).

In ihrer aktuellen Forschung versuchen die Wissenschaftler die Haftung durch Verfeinerung der Strukturen noch zu verbessern. "Da hat die Arbeitsgruppe aber noch jede Menge Arbeit vor sich, denn was im Labor klappt, lässt sich noch lange nicht auf die großtechnischen Produktion übertragen", erläutert Stanislav Gorb.

Originalveröffentlichung:

S. Gorb, M. Varenberg, A. Peressadko and J. Tuma.
Biomimetic mushroom-shaped fibrillar adhesive microstructure.
Journal of the Royal Society Interface, 17. Oktober 2006
K.A. Daltorio, S. Gorb, A. Peressadko, A. D. Horchler, R.E. Ritzmann und R.D. Quinn
A robot that climbs walls using micro-structured polymer feet.
Proc. Int. Conf. Climbing and Walking Robots (CLAWAR), London, UK. 13-15. September 2005

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Haftmaterial Metallforschung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften