Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Superelastische Polymere: Kunststoffe der Zukunft

19.10.2006
Festigkeit und Elastizität versprechen hohe Flexibilität im Anwendungsbereich

Einem Wissenschaftsteam des Instituts für Materialwissenschaft und Werkstofftechnologie (IMT) der Friedrich-Schiller-Universität Jena unter der Leitung von Roland Weidisch ist es gelungen, superelastische Kunststoffe mit herausragenden Eigenschaften zu entwickeln. Somit wird eine Ausdehnung bis weit über das Zehnfache ihrer ursprünglichen Größe möglich. Eine Belastung bis 1.000 Prozent soll demnach möglich sein, wobei diese innovativen Polymere ihre anfängliche Form komplett wieder annehmen.

Im Gespräch mit pressetext weist Weidisch darauf hin, dass das Geheimnis in der Molekülverknüpfung liegt und sich potenzielle Anwendungsgebiete industrieweit finden lassen. Der Experte spricht hierbei den zukunftsweisenden Einsatz superelastischer Kunststoffe vor allem in der Medizin als Silikonersatz an, wobei sich die Forschungsergebnisse in diesem Bereich noch teilweise im Grundlagenstadium befinden. Den ehest möglichen Einsatzort dieser Werkstoffe sieht der Wissenschaftler in den USA, da mit der chemischen Synthese neue Patentierungsmöglichkeiten offen stehen. In der Prognose gibt sich der Forscher dahingehend optimistisch, als erste Testverfahren im akustischen Membranenbereich Erfolg versprechend waren und sich schon im nächsten Jahr industriell etablieren werden. Hierbei hält er die Anwendung im Lautsprecher- und Kopfhörerbereich nicht nur für die USA, sondern bald auch für den gesamten europäischen Raum für durchaus realistisch.

Die Eigenschaften superelastischer Kunststoffe werden durch lange Ketten ihrer verknüpften molekularen Einzelbausteine erreicht. Im Gegensatz zu herkömmlichen Kunststoffen, wie beispielsweise Polystyrol (PS) oder Polyvinylchlorid (PVC), sind superelastische Kunststoffe aus einer elastischen Grundkette mit zusätzlichen komplexen Verzweigungen, wie etwa PS, aufgebaut. Folglich lassen sich die an für sich gegensätzlichen Eigenschaften einer stabilen Festigkeit einerseits und hoher Elastizität andererseits erreichen. Ergebnisorientiert steht bei der wissenschaftlichen Erforschung solcher Art neuer Kunststoffe die chemische und physikalische Grundstruktur im Vordergrund. Anwendungsspezifisch werden die mechanischen Eigenschaften analysiert, um darauf aufbauend "potenzielle Einsatzgebiete solcher Materialien" weiter ausfindig machen zu können, so Weidisch. In diesem Zusammenhang könnten superelastische Kunststoffe bald auch im Bereich des Automobil-Fahrzeugbaus eingesetzt werden.

Florian Fügemann | pressetext.deutschland
Weitere Informationen:
http://www.matwi.uni-jena.de
http://www.uni-jena.de

Weitere Berichte zu: Elastizität Kunststoff Polymer Superelastisch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen
27.06.2017 | Fraunhofer IFAM

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie