Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Materialien von morgen: voller Überraschungen

26.07.2006
VolkswagenStiftung bewilligt rund 3,2 Millionen Euro für sechs neue Vorhaben in den Materialwissenschaften

An der Schnittstelle von Biologie, Chemie und Materialwissenschaften entstehen neue Materialien mit faszinierenden, viel versprechenden Eigenschaften - natürlich nicht von selbst, sondern nur dank entsprechender Kreativität und intensiver Forschung, die immer wieder Neuland erobert. Gleiches gilt dort, wo bekannte Materialien immer kleiner dimensioniert werden, bis auch sie völlig neue Charakteristiken aufweisen. Mit der inzwischen beendeten Förderinitiative "Komplexe Materialien: Verbundprojekte der Natur-, Ingenieur- und Biowissenschaften" hat die VolkswagenStiftung fünf Jahre lang angeregt, solche innovativen Materialien zu entwickeln und zu erforschen. Letztmalig werden nun sechs weitere Vorhaben bewilligt über insgesamt 3,2 Millionen Euro, darunter:

1.) 503.000 Euro für das Kooperationsvorhaben "Preparation, characterization and applications of free-standing unimolecular nanosheets" von Professor Dr. Armin Gölzhäuser vom Lehrstuhl für Physik supramolekularer Systeme der Universität Bielefeld, Professor Dr. Wolfgang Eck vom Institute for Molecular Biophysics am Jackson Laboratory in Bar Harbor, USA, und Dr. Thomas Weimann, AG "Nanostrukturen für technische Anwendungen" an der Physikalisch-Technischen Bundesanstalt in Braunschweig;

2.) 368.900 Euro für das Kooperationsvorhaben "Mechanical measurements on plant virus derived tubes"; die beteiligten Wissenschaftler sind Professor Dr. Dirk Prüfer vom Institut für Biochemie und Biotechnologie der Pflanzen an der Universität Münster, Dr. Andreas Kiesow vom Fraunhofer-Institut für Werkstoffmechanik in Halle (Saale) und Professor Dr. Peter Gumbsch vom Institut für Zuverlässigkeit von Bauteilen und Systemen der Universität Karlsruhe;

3.) 684.000 Euro für das Kooperationsvorhaben "Mechanotunable protein networks with switchable biological activities" von Professor Dr. Joachim Spatz vom Physikalisch-Chemischen Institut der Universität Heidelberg, Professor Dr. Viola Vogel vom Laboratory for Biologically Oriented Materials an der ETH Zürich, Schweiz, Professor Dr. Benjamin Geiger vom Department of Molecular Cell Biology am Weizmann Institute of Science, Rehovot, Israel - sowie Professor Dr. Michael Sheetz vom Department of Biological Sciences der Columbia University, New York, USA.

Es folgen Informationen zu diesen Projekten; im Anschluss in der Kurzübersicht die drei weiteren neu bewilligten Vorhaben.

Zu 1: Molekulare Nanofilme

Ein Film mit der Dicke eines einzelnen Moleküls: Das ist das Material, das die Forscher aus Bielefeld, Braunschweig und Bar Harbor als Erste und bislang Einzige herstellen konnten und dessen Eigenschaften und Anwendungen sie nun im Rahmen dieses gemeinsamen Vorhabens untersuchen wollen. Ihre "Nanoblätter" - sie sind nur ein bis zwei Nanometer dünn - basieren auf vernetzten, selbstorganisierenden Schichten, die sich nach der Herstellung vom Träger ablösen lassen und trotz der geringen Dicke freistehend stabil sind.

Die Eigenschaften dieses allein durch seine "Dünne" einzigartigen, neuen Materials zu erforschen, verspricht aus Sicht der Grundlagenforschung bereits spannende Ergebnisse. Doch die Wissenschaftler haben darüber hinaus auch höchst praktische Anwendungen im Visier. So könnten die Nanoblätter Einsatz finden in der hochauflösenden Transmissionselektronenmikroskopie, sie könnten als höchstempfindliche Gas-Sensoren eingesetzt werden - oder auch als elektrisch leitfähige Nanoschichten.

Kontakte zu Projekt 1:

Universität Bielefeld
Fakultät für Physik
Prof. Dr. Armin Gölzhäuser
Telefon: 0521 106 5362
E-Mail: goelzhaeuser@physik.uni-bielefeld.de
The Jackson Laboratory
Bar Harbor/ME, USA
Prof. Dr. Wolfgang Eck
Telefon: 001 207 288 6740
E-Mail: weck@jax.org
PTB Braunschweig; AG 2.44
Dr. Thomas Weimann
Telefon 0531 592 2281
E-Mail: thomas.weimann@ptb.de
Zu 2: Pflanzenviren als Nanoröhren-Produzenten
Einige Viren breiten sich in den Zellen befallener Pflanzen aus, indem sie für den Transport der viralen DNA einen winzigen Kanal aus Proteinen in das Zellinnere ausbilden. Die so entstehenden Virenkanäle sind letztlich nichts anderes als Nanoröhrchen. Mit ihren mechanischen und elektrischen Eigenschaften könnten sie das Feld der Nanotechnologie - das bislang weitgehend durch die Kohlenstoff-Nanoröhrchen abgesteckt ist - außerordentlich erweitern. Das interdisziplinäre Wissenschaftlerteam aus Münster, Karlsruhe und Halle rechnet damit, dass die Virenkanäle noch unerkannte mechanische Eigenschaften besitzen - möglicherweise der Spinnenseide vergleichbar. Es ist gut vorstellbar, dass Virenkanäle dann in Zukunft etwa als mechanisch stabiles Verbindungselement in der Bio-, Nano- oder Mikroelektronik eingesetzt werden können.

Die Forscher werden im Rahmen des geförderten Projekts die fundamentalen mechanischen und elektrophysiologischen Eigenschaften dieser Nanoröhren detailliert und mit speziell entwickelten Messaufbauten untersuchen, um das Potenzial dieser Objekte für mögliche künftige Anwendungen zu erschließen.

Kontakte zu Projekt 2:

Universität Münster
Institut für Biochemie und Biotechnologie der Pflanzen
Prof. Dr. Dirk Prüfer
Telefon 0251 83 22302
E-Mail: dpruefer@uni-muenster.de
Fraunhofer IWMH Halle (Saale)
Dr. Andreas Kiesow
Telefon: 0345 5589 118
E-Mail: andreas.kiesow@iwmh.fraunhofer.de
Universität Karlsruhe
Institut für Zuverlässigkeit von Bauteilen und Systemen
Prof. Dr. Peter Gumbsch
Telefon: 0721 608 4363
E-Mail: peter.gumbsch@mach.uni-karlsruhe.de
Zu 3: Material mit mechanisch schaltbaren Zellfunktionen
Bei diesem Gemeinschaftsprojekt von Wissenschaftlern aus Deutschland, der Schweiz, Israel und den USA soll erstmals versucht werden, aus synthetischen und biologischen Komponenten eine Adhäsionsmatrix zu entwerfen, die mechanisch zu regulieren ist. Mit anderen Worten: Die Forscher wollen ein Material entwickeln, bei dem sich beispielsweise durch Druck bestimmte Zellfunktionen verändern lassen. Die resultierenden Signal- und Adhäsionseigenschaften der Zelle könnten auf diese Weise gezielt beeinflusst werden. Basis der neuen Materialien sind Fibronektin und Kollagen.

Das Vorhaben - ein Beispiel für herausragende Forschung an der Schnittstelle von Biologie, Chemie und Materialwissenschaft - kann sich auf aktuelle Studien stützen, die zeigen, dass die Wechselwirkungen zwischen einer Zelle und ihrer Umgebung nicht allein durch die Chemie der Zellmatrix reguliert werden, sondern tatsächlich auch durch deren mechanischen Eigenschaften. Durch mechanische Belastung lässt sich also die Signalverbreitung und die daraus folgende molekulare Wechselwirkung an- oder abschalten. Wie das funktioniert, ist allerdings noch nicht verstanden - und eine der zentralen Herausforderungen für das Projektteam.

Kontakte zu Projekt 3:

Universität Heidelberg
Phys.-Chem. Institut
Prof. Dr. Joachim Spatz
Telefon: 06221 54 4942
E-Mail: joachim.spatz@urz.uni-heidelberg.de
ETH Zürich
Department of Materials
Prof. Dr. Viola Vogel
Telefon: 0041 44 632 08 87
E-Mail: viola.vogel@mat.ethz.ch
The Weizmann Institute of Science, Rehovot/Israel
Prof. Dr. Benjamin Geiger
Telefon: 00972 8 934 3910
E-Mail: benny.geiger@weizmann.ac.il
Columbia University, NY
Biological Sciences
Prof. Dr. Michael Sheetz
Telefon: 001 212 854 4857
E-Mail: ms2001@columbia.edu
Bewilligt wurden in der Förderinitiative "Komplexe Materialien" zudem:
4.) 463.800 Euro für das Vorhaben "Hybrid complexes from biological and synthetic materials for light-harvesting and charge separation applications" der Forscher Professor Dr. Harald Paulsen vom Institut für Allgemeine Botanik der Universität Mainz, Professor Dr. Thomas Basché vom Institut für Physikalische Chemie, ebenfalls Universität Mainz, und Professor Dr. Klaus Müllen vom Max-Planck-Institut für Polymerforschung in Mainz;
Kontakt Projekt 4:
Universität Mainz
Institut für Allgemeine Botanik
Prof. Dr. Harald Paulsen
Telefon: 06131 392 4633
E-Mail: paulsen@mail.uni-mainz.de
5.) 703.100 EUR für das Vorhaben "Bio-inspired dye assemblies for supramolecular electronics" von Professor Dr. Alfred R. Holzwarth vom Max-Planck-Institut für Bioanorganische Chemie in Mülheim a. d. Ruhr, Professor Dr. Frank Würthner vom Institut für Organische Chemie der Universität Würzburg, Professor Dr. Hubertus H. M. de Groot vom Chemistry Department, Gorlaeus Laboratory der Universität Leiden, Niederlande, und Professor Dr. Harald Fuchs vom Physikalischen Institut, Gruppe Grenzflächenphysik der Universität Münster;
Kontakt Projekt 5:
Max-Planck-Institut für Bioanorganische Chemie
Mülheim a. d. Ruhr
Prof. Dr. Alfred R. Holzwarth
Telefon: 0208 306 3571
E-Mail: holzwarth@mpi-muelheim.mpg.de
6.) 454.500 EUR für das Vorhaben "Active spatio-temporal control of biomolecular transport systems using stimuli-responsive polymers" von Dr. Stefan Diez von der Forschungsgruppe Bionanotechnologie am Max-Planck-Institut für molekulare Zellbiologie und Genetik in Dresden, Professor Dr. Manfred Stamm vom Teilinstitut für Physikalische Chemie und Physik der Polymere am Leibniz-Institut für Polymerforschung Dresden e. V. und Privatdozent Dr. Dirk Kuckling vom Institut für Makromolekulare Chemie der Technischen Universität Dresden.
Kontakt Projekt 6:
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
Dr. Stefan Diez
Telefon 0351 210 2521
E-Mail: diez@mpi-cbg.de
Kontakte
VolkswagenStiftung
Presse- und Öffentlichkeitsarbeit
Dr. Christian Jung
Telefon: 0511 8381 - 380
E-Mail: jung@volkswagenstiftung.de
Förderinitiative der VolkswagenStiftung
Dr. Franz Dettenwanger
Telefon: 0511 8381 - 217
E-Mail: dettenwanger@volkswagenstiftung.de

Dr. Christian Jung | idw
Weitere Informationen:
http://www.volkswagenstiftung.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie