Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einblicke in zerknülltes Papier

06.04.2006


In ihrer Computersimulation interessierte Dr. Gerrit Vliegenthart und Prof. Gerhard Gompper besonders die Steifigkeit und der Widerstand beim Zernknüllen von dünnen Folien zu kugelförmigen Gebilden. Einen wesentlichen Beitrag dazu liefern die
Kontaktflächen, die zwischen verschiedenen Bereichen der Folie entstehen. Bilder: Forschungszentrum JülichGompper vom Institut für Festkörperforschung

Dr. Gerrit Vliegenthart und Prof. Dr. Gerhard Gompper vom Forschungszentrum Jülich haben ein Computer-Modell entwickelt, um die strukturellen und mechanischen Eigenschaften von dünnen elastischen Folien zu untersuchen, die auf engem Raum zusammengedrückt werden. Im März-Heft der wissenschaftlichen Zeitschrift Nature Materials berichten sie, wie die Anzahl der dabei entstehenden Falten drastisch anwächst, wenn das Blatt Papier durch äußere Kräfte immer stärker komprimiert wird, und wie gleichzeitig die Steifigkeit des zerknüllten Papiers mit zunehmender Kompression stark ansteigt. Abgesehen von den direkten Anwendungen der Ergebnisse dieser Simulationen für makroskopische Materialien wie Papier, Aluminiumfolie und Autobleche werfen die Rechnungen auch ein neues Licht auf die grundlegenden mechanischen Eigenschaften dünner Schichten im mikroskopischen Bereich, wie der Proteinhülle von Viren, nanoskaliger Lehmplättchen und der Plasmamembran biologischer Zellen.

Es ist kaum vorstellbar, dass es Menschen auf der Welt gibt, die noch nie ihrem Leben ein Stück Papier oder eine Getränkedose in ihren Händen zerknäuelt oder zerdrückt haben. Um so erstaunlicher, dass bisher nur ein relativ geringes fundamentales Verständnis des „Krumplungsvorgangs’’ existiert. Dabei gelten die Konzepte, die für die makroskopischen Beispiele wie Papier, Aluminiumfolie und die Metallbleche eines Autos entwickelt werden, ebenso auch für die Verformung von mikroskopisch kleinen und dünnen Schichten, mit großer biologischer oder technischer Relevanz.

... mehr zu:
»Falte »Folie »Kompression »Packungseffekt

Wenn ein Stück Papier in den Händen zerknüllt und danach wieder beinahe glattgestrichen wird, dann wird ein faszinierendes Muster von Falten sichtbar. Einzelne Falten sind in den letzten Jahren auf der Grundlage einer Theorie der Verformung dünner Platten – entwickelt vom ungarischen Physiker Theodore von Kármán (1881-1963) – und mit Hilfe von Computer-Simulationen intensiv untersucht worden. Die Eigenschaften einzelner Falten sind daher inzwischen recht gut verstanden. Darauf aufbauend wurden verschiedene Vorschläge gemacht, wie die elastischen Eigenschaften einer geknäuelten Folie verstanden werden könnten. Dazu wurde angenommen, dass die elastischen Eigenschaften einer glatten Folie – ihr Widerstand gegenüber Biegung und Scherung – ausreichend sind, um die mechanischen Eigenschaften eines Papierknäuels zu beschreiben.

In ihrer Computersimulation interessierte Dr. Gerrit Vliegenthart und Prof. Gerhard Gompper besonders die Steifigkeit und der Widerstand beim Zernknüllen von dünnen Folien zu kugelförmigen Gebilden. Einen wesentlichen Beitrag dazu liefern die Kontaktflächen, die zwischen verschiedenen Bereichen der Folie entstehen. Bilder: Forschungszentrum Jülich

Im März-Heft der renomierten Zeitschrift Nature Materials haben die Jülicher Forscher, G. Vliegenthart und G. Gompper vom Institut für Festkörperforschung, jedoch gezeigt, dass sowohl das Faltenmuster eines Papierknäuels als auch der Faltungsprozess selbst sich drastisch ändern, wenn zusätzlich zu den elastischen Materialeigenschaften der Folie auch Packungseffekte berücksichtigt werden. Packungseffekte entstehen aufgrund der Tatsache, dass verschiedene Teile eines Stücks Papier sich nicht gegenseitig durchdringen können, und sind daher bei jedem echten Material unvermeidbar. Die theoretische Behandlung der Packungseffekte dünner elastischer Folien ist jedoch extrem schwierig; ihre Untersuchung in Computer-Modellen wurde erst jetzt mit der Verfügbarkeit genügend leistungsfähiger Computer, wie den Jülicher Supercomputern JUMP und JUBL, möglich. Mit Hilfe von umfangreichen Computer-Simulationen gelang es Vliegenthart und Gompper erstmals, die verschiedenen Formen zu verfolgen, die beim Zerknäueln einer Folie mit unterschiedlichen Kompressionskräften entstehen und durchlaufen werden.

Diese Formen reichen von kegelähnlichen Strukturen, die bei geringen Kompressionskräften auftreten, bis zu dicht gepackten Knäueln bei starken Kräften. Die Simulationsergebnisse zeigen, dass die Beziehung zwischen Kraft und Kompression sehr stark von Packungseffekten beeinflusst wird, die zu einer erheblichen Versteifung des Knäuels führen (im Vergleich zum bisherigen Modell der fiktiven „Phantomfolien“, die sich selbst durchdringen können).

Bemerkenswerterweise spielen Packungseffekte bei dünnen Folien bereits bei extrem geringen Packungsdichten eine wichtige Rolle – im Gegensatz zu Suspensionen von Nanoteilchen oder Makromolekülen, wo Packungseffekte normalerweise erst bei hohen Konzentrationen auftreten. Durch die Ausnutzung der einzigartigen Möglichkeiten die Computer-Simulationen bieten, konnten Vliegenthart und Gompper untersuchen wie der Zusammenhang von Kraft und Kompression von der Form des Behälters und der Kraftrichtung abhängt. Auf der Grundlage der Simulationsergebnisse können neuere experimentelle Ergebnisse für die Kompression in einer zylinderförmigen Röhre quantitativ erklärt werden. Schließlich gelang es Vliegenthart und Gompper zu zeigen, dass Packungseffekte zu einer starken Zunahme in der Anzahl kleiner Faltenlängen führen und dass in einem zerkläuelten Papier sehr unterschiedliche Faltenlängen auftreten. Diese Ergebnisse sind in guter Übereinstimmung mit jüngsten Experimenten.

Lit.: Crumpling a thin elastic sheet, G.A. Vliegenhathart and G. Gompper, Nature Materials 5, 216-221, 2006 Online unter: http://www.nature.com/nmat/journal/v5/n3/full/nmat1581.html Zugehöriger Kommentar: http://www.nature.com/nmat/journal/v5/n3/full/nmat1599.html Pressekontakt: Kosta Schinarakis, Wissenschaftsjournalist, Öffentlichkeitsarbeit, Forschungszentrum Jülich Tel. 02461 61-4771, Fax 02461 61-4666, E-Mail: k.schinarakis@fz-juelich.de

Das Forschungszentrum Jülich ist das größte multidisziplinäre Forschungszentrum in Europa. Seine Themen spiegeln die großen Herausforderungen der Gesellschaft wider: Versorgung mit Energie, Schutz der Umwelt, Umgang mit Information sowie Erhalt von Gesundheit. Jülicher Wissenschaftler arbeiten in den Disziplinen Physik, Chemie, Biologie, Medizin und Ingenieurwissenschaften. Langfristige, grundlagenorientierte und fächerübergreifende Beiträge zu Naturwissenschaft und Technik werden ebenso erarbeitet wie konkrete technologische Anwendungen für die Industrie. Das 1956 gegründete Forschungszentrum Jülich ist Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Kosta Schinarakis | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de/portal/angebote/pressemitteilungen

Weitere Berichte zu: Falte Folie Kompression Packungseffekt

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Energie, sicher und leicht transportiert – Adaptive Verarbeitung komplexer Steuerungsdaten
17.05.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie