Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Metalle gut in Form

17.10.2001


Wissenschaftler am Max-Planck-Institut für Eisenforschung entwickeln neues Rechenverfahren / Neueste Ausgabe der MaxPlanckForschung erschienen


Seit einigen tausend Jahren bearbeitet die Menschheit Metalle. Doch während Chemiker inzwischen ganze Enzymkomplexe am Bildschirm zusammensetzen können, gab es bisher noch kein Verfahren, mit dem sich die Formänderungen, denen die vermeintlich einfach strukturierten metallischen Werkstoffe durch Krafteinwirkung unterworfen sind, zuverlässig und in vertretbarer Rechenzeit im Computer nachbilden ließen. Ein neues, besonders effizientes Rechenverfahren, das Wissenschaftler des Düsseldorfer Max-Planck-Instituts für Eisenforschung entwickelt haben, schafft hier mit einem intelligenten Mix aus Kristallographie, Metallphysik und Variationsmathematik Abhilfe. Darüber berichtet die MaxPlanckForschung, das Wissenschaftsmagazin der Max-Planck-Gesellschaft, in ihrer neuesten Ausgabe.


Rätselhafte Metalle: "Wer versucht, ein einfaches Aluminiumblech in die Gestalt eines Näpfchens umzuformen, erhält in der Praxis ein Gebilde, das am oberen Rand Zipfel und unterschiedliche Wanddicken aufweist", sagt Franz Roters, Leiter der Gruppe für Theorie und Simulation am Max-Planck-Institut für Eisenforschung in Düsseldorf. "Im Computer konnte man dieses einfache Phänomen bisher noch nicht simulieren - es sei denn, man betrieb einen unverhältnismäßig hohen Rechenaufwand." Mit anderen Worten: Während der Bildschirm den Materialforschern bisher eine perfekte Schale zeigte, holte der Ingenieur ein Objekt aus der Maschine, das eher die Form eines Aschenbechers hatte - fast scheint es, als wäre die Eisenzeit immer noch nicht ganz in den Workstations der Industrie angekommen.


"Die Ursache hierfür liegt in der polykristallinen Struktur der Metalle", sagt Professor Dierk Raabe, Leiter der Abteilung für Mikrostrukturphysik und Umformtechnik am Düsseldorfer Max-Planck-Institut. Tatsächlich sind die nach außen hin oft glatt wirkenden Metalle in ihrem Innersten keineswegs homogen, sondern zusammengesetzt aus einer Vielzahl kleiner Kristalle, deren Achsen im Werkstoff mehr oder weniger zufällig ausgerichtet sind. Je nach Metall, Legierung und Herstellungsweise sind sie einige wenige Mikrometer bis einige Zentimeter groß; bei verzinktem Stahl kann man diese Kristalle häufig sogar mit bloßem Auge sehen. Grund für die komplexe Struktur sind die Erstarrungs- und Umwandlungsprozesse aus der Metallschmelze. Wenn diese abkühlt, bilden sich in der flüssigen Phase eine Vielzahl von Kristallisationskeimen, die in Konkurrenz zueinander wachsen. Die daraus resultierende Unordnung währt jedoch nicht lange, denn durch weitere Produktionsschritte wie zum Beispiel durch Walzen können die Kristalle in einer bestimmten Weise ausgerichtet werden. Und genau die daraus folgende "Anisotropie" ist die Ursache der Probleme, die die rechnerische Modellierung vermeintlich einfacher Formgebungsprozesse - Schmieden, Strecken oder Tiefziehen - bislang so schwierig macht. Raabe: "Während der Umformung ändern diese Kristalle ständig ihre kristallographische Orientierung und mithin auch die Gesamtanisotropie des Werkstücks."

"Zipfel" anstelle eines ebenmäßigen Randes: Erst, wenn man die mikrokristalline Struktur der Metalle angemessen in die Berechnung eines Umformvorgangs einbezieht, nimmt die Simulation die korrekte Form des Metallblechs vorweg.
Fotos: MPI für Eisenforschung

Denn anders als zum Beispiel ein Stück Gummi kann man Kristalle nicht ohne weiteres in jede beliebige Richtung verformen: Im Kristall sind nur Scherungen in bestimmte Richtungen erlaubt, dabei verschieben sich letztlich benachbarte Atomlagen gegeneinander. Auf bestimmte Formänderungen, etwa durch Ziehen oder Stauchen, muss der Kristall zusätzlich mit Rotationen des Kristallgitters reagieren. Da diese Rotationen für jeden Kristall unterschiedlich ausfallen, kommt es obendrein zu komplizierten Wechselwirkungen der Kristalle untereinander. Diese mikroskopischen Beschränkungen haben einen ganz erheblichen Einfluss auf die makroskopische Formänderung, mit der Metalle auf Krafteinwirkungen reagieren; Programme, die dies nicht berücksichtigen, kommen daher zu falschen, idealisierten Resultaten.

Natürlich hat die Anwendungstechnik auf diese Defizite bereits reagiert; so bringen Crashtests im Computer schon lange brauchbare Ergebnisse - aber nur, weil sie stark auf empirisch gewonnene Zusammenhänge bauen. "Dennoch stößt man hier in vielen Bereichen an Grenzen", sagt Roters. "Aluminium oder hochfeste Stähle müssen gerade in der Automobiltechnik heute mit immer engeren Toleranzen hinsichtlich ihrer Abmessungen und Eigenschaften produziert werden", ergänzt Raabe, "entsprechende Prozesse und Werkzeuge müssen daher vor der eigentlichen Produktionsphase auf dem Computer genauestens ausgelegt werden."

Bisher setzt man dagegen zum Beispiel bei der Festigkeitsauslegung von Metallbauteilen aus Sicherheitsgründen häufig mehr Material ein als nötig wäre, weil die Simulation eines Tiefziehprozesses die Wanddicken des entstehenden Teils nicht zuverlässig vorhersagt. "Hier wäre es also wünschenswert, die Physik besser zu berücksichtigen", sagt Roters. Natürlich hat es auch auf dem Gebiet der "reinen Lehre" nicht an intelligenten Lösungsansätzen gefehlt, die allerdings in der Praxis eine wesentliche Beschränkung mitbrachten: Rechenmodelle, die die Mikrostrukturphysik der Metalle im Detail berücksichtigen, bringen zwar sehr gute Ergebnisse - aber erst nach wochenlangen Rechenläufen.

Seit einigen tausend Jahren bearbeitet die Menschheit Metalle. Doch während Chemiker inzwischen ganze Enzymkomplexe am Bildschirm zusammensetzen können, gab es bisher noch kein Verfahren, mit dem sich die Formänderungen, denen die vermeintlich einfach strukturierten metallischen Werkstoffe durch Krafteinwirkung unterworfen sind, zuverlässig und in vertretbarer Rechenzeit im Computer nachbilden ließen. Ein neues besonders effizientes Rechenverfahren, das Wissenschaftler des Düsseldorfer Max-Planck-Instituts für Eisenforschung entwickelt haben, schafft hier mit einem intelligenten Mix aus Kristallographie, Metallphysik und Variationsmathematik Abhilfe.
Fotos: MPI für Eisenforschung

Das Rechenverfahren, das die Düsseldorfer Wissenschaftler um Dierk Raabe nach zwei Jahren Forschung nun vorgestellt haben, überbrückt den Spagat zwischen Genauigkeit und Praxisnähe jedoch auf sehr elegante Weise: Anstatt in jedem einzelnen Simulationsschritt das individuelle Verhalten abertausender einzelner Kristalle zu berechnen, setzt es kurzerhand auf statistische Aussagen über das Verhalten größerer Kristallansammlungen unter Krafteinwirkung. Dazu messen die Mitarbeiter von Raabe und Roters mithilfe von Röntgenbeugungsmethoden zunächst die Orientierungsverteilung der Kristalle (Textur genannt) etwa in einem Aluminium- oder Stahlblech. Kristalle, die zum Beispiel beim Walzen des Werkstoffs in irgendeiner Weise ausgerichtet wurden, werden statistisch in Gruppen zusammengefasst. Diese Gruppen beschreiben also die Anisotropie des Werkstücks und werden Texturkomponenten genannt. Dann berechnen Raabe und Roters mittels der Finite-Elemente-Methode (FEM), wie der Umformvorgang die Texturkomponenten an jedem Punkt eines als Gitter angenäherten Blechmodells beeinflusst: Letztlich beschreibt das Verfahren also Schritt für Schritt, wie die orientierten Kristalle an jedem Gitterpunkt unter Einwirkung einer gerichteten Kraft im Mittel gedreht werden.

Der Erfolg ist verblüffend: Die "gefürchteten" Aluminiumzipfel vorherzusagen ist für das Modell eine leichte Übung. "Für dieses neue Verfahren mussten wir drei zwar schon bekannte, aber bislang getrennt voneinander erarbeitete Konzepte aus der Kristallographie (Texturkomponenten), der Metallphysik (Kristallplastizität) und der Variationsmathematik (FEM) zusammenführen", sagt Raabe. Der Clou: Weil nun nicht mehr die Wechselwirkung einzelner Kristalle im Detail berechnet wird, sondern lediglich die Änderung der sehr viel einfacher zu beschreibenden, abstrakten Größe "Texturkomponente", spart das auf den Namen "Texturkomponenten-Kristallplastizitäts-Finite-Elemente-Methode" getaufte Modell viel Rechenzeit. Im Vergleich zu den aufwändigen "Kristall-für-Kristall-Berechnungen" ist die Düsseldorfer Methode etwa um den Faktor 100 bis 1000 schneller; die genaue Simulation eines komplexen Umformvorgangs ist mitunter schon in wenigen Stunden abgeschlossen. Damit dürfte das Verfahren geeignet sein, die dringenden Auslegungsfragen der Industrie in angemessener Zeit und auf physikalischer Basis zu beantworten. Mehr noch: "Im Prinzip können wir nun obendrein auch besser prognostizieren, wo die Ausfallwahrscheinlichkeit eines Metallteils unter starker Belastung am höchsten ist", ergänzt Roters, "denn die erzwungene Orientierungsänderung der Kristallite bei der Umformung führt natürlich zu Spannungen im Material, die sich in der Mikroelektronik und im Automobilbau ebenso wie in meterlangen Bauteilen der Kraftwerkstechnik negativ bemerkbar machen können - auch diese Spannungen können wir nun am Bildschirm darstellen."

Weitere Informationen erhalten Sie von:

Prof. Dr. Dierk Raabe und Dr. Franz Roters
Max-Planck-Institut für Eisenforschung, Düsseldorf
Tel.: 02 11 / 67 92 - 2 78 bzw. - 3 93
Fax: 02 11 / 67 92 - 3 33
E-Mail: raabe@mpie.de und roters@mpie.de

| MPG
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

nachricht Ein Herz aus Spinnenseide
11.08.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten