Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neutronen als Spione in der Nanowelt

24.11.2005


Max-Planck-Gesellschaft und TU München starten weltweit einmaliges Neutronenspektrometer an der Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Garching



Ein neuartiges Neutronen-Röntgen-Reflektometer "N-REX+" wird von der Technischen Universität München und vom Max-Planck-Institut für Metallforschung in Stuttgart am Donnerstag, den 24. November 2005 an der Forschungsneutronenquelle Heinz Maier-Leibnitz in Garching eingeweiht. Das N-REX+ ("Neutron Reflectometry & X-Rays") und das an der Neutronenquelle bereits in Betrieb genommene TRISP ("Triple axis resonance spin echo spectrometer") sind zwei weltweit einzigartige Neutronenspektrometer, die von den Stuttgarter Max-Planck-Forschern in den vergangenen fünf Jahren konzipiert und an der Neutronenquelle aufgebaut wurden. Die Kosten dafür belaufen sich auf mehrere Mio. Euro. Von diesen HighTech-Messgeräten werden neue Erkenntnisse über Nanomaterialien erwartet, insbesondere über den mikroskopischen Mechanismus der Hochtemperatur-Supraleitung sowie über atomare Prozesse an den inneren Grenzflächen von künstlichen Vielfachschichten und dünnen Filmen. Die beiden Neutronen-Spektrometer sind der experimentelle Dreh- und Angelpunkt der Institutsübergreifenden Forschungsinitiative "Material- und Festkörperforschung mit Neutronen", welche die Max-Planck-Gesellschaft gleichzeitig mit der Einweihung präsentiert. Die Initiative wird von den Stuttgarter Max-Planck-Instituten für Metallforschung und Festkörperforschung koordiniert.



Neue Technologien erfordern es, auch bisher unbekannte Materialien zu entwickeln und deren Eigenschaften und Funktionen auf mikroskopischer und nanoskopischer Ebene zu verstehen. Künftige Materialstrukturen werden immer kleiner und komplexer, bis hin zu atomaren Abmessungen. Dabei geht es um Materialien und Materialkombinationen aus allen Klassen, also Metalle, Halbleiter oder Keramiken bis hin zu organischen und biologischen Materialien. Um die Funktionen derartig komplexer Systeme gezielt manipulieren zu können, müssen die Wissenschaftler zuerst über detaillierte Kenntnisse ihrer chemischen, elektronischen oder magnetischen Strukturen verfügen. Hierbei spielen Neutronen als "Spione in der Nanowelt" eine entscheidende Rolle.

Seit einem Jahr erzeugt die Garchinger Hochflussquelle Neutronen von hoher Brillanz. Sie durchdringen Materie spurlos und völlig zerstörungsfrei. Dabei liefern sie ein detailliertes mikroskopisches Bild vom atomaren Innenleben des durchstrahlten Materials. Insbesondere magnetische Nanostrukturen und strahlungsempfindliche organische und biologische Materialien können geradezu ideal mit Neutronen bis auf die atomaren Strukturen entschlüsselt werden.

Die Neutronenspektrometer N-REX+ und TRISP untersuchen komplexe Festkörperstrukturen und funktionale Dünnfilmsysteme mit einem neuen Analyse-Konzept. Dabei nutzen die Forscher die quantisierte Eigendrehung des Neutrons ("Spin"), dessen Drehgeschwindigkeit man durch ein äußeres Magnetfeld präzise einstellen kann. Prof. Helmut Dosch, Koordinator des Forschungsprojektes, meint dazu: "Jedem Neutron wird mit dem Spin auf seiner Reise durch die Nanowelt eine individuelle Uhr auf den Weg gegeben, die man am Ende der Reise, wenn also das Neutron detektiert wird, wieder auslesen kann. Damit lassen sich kleinste Ablenkungen und Geschwindigkeitsänderungen des Neutrons nachweisen, aus denen man dann wiederum auf Struktur und Eigenschaften des untersuchten Materials schließen kann."

In der neuen Forschungsinitiative arbeiten mehrere Max-Planck-Institute Hand in Hand, um die schwierigen Probleme bei diesen Messungen effizient zu lösen: Die beiden Spektrometer sind von den Stuttgarter Max-Planck-Instituten für Metallforschung und für Festkörperforschung installiert worden. Zusammen mit den Max-Planck-Instituten für Polymerforschung (Mainz), für Grenzflächen- und Kolloidforschung (Golm), für Plasmaforschung (Garching), für die chemische Physik fester Stoffe (Dresden) und für Eisenforschung (Düsseldorf) sollen in den nächsten fünf Jahren die ersten entscheidenden Experimente in Garching durchgeführt werden.

Öffentliches Programm für die Einweihung am 24. November 2005
11:30 - 13:00 Uhr Einweihungsfeier
im Hörsaal 2 (PH 2502) der
Technischen Universität München, Physikdepartment I
James-Franck Straße
85748 Garching

Weitere Informationen erhalten Sie von
Prof. Helmut Dosch
Tel.: 0711 689-1901
Fax: 0711 689-1902
Mail: dosch@mf.mpg.de

Dieter Heinrichsen M.A. | idw
Weitere Informationen:
http://www.mpg.de/instituteProjekteEinrichtungen/zentralGefoerderteProjekte/institutsuebergrProj/materialforschung/index.html
http://www.mf.mpg.de/en/abteilungen/dosch/frmII/frmIIintro_en.shtml
http://www.frm2.tum.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften