Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Materialien magnetisch strukturiert

17.05.2005


Schema


Mikroskopische Aufnahme der Probe


Der Magnetismus ist, ebenso wie die Härte, die Farbe oder die elektrische Leitfähigkeit, eine wichtige physikalische Eigenschaft eines Materials. Weist ein Material eine magnetische Vorzugsrichtung auf, so kann es wie eine Kompassnadel zur Bestimmung des Erdmagnetfelds "magnetisiert" werden. Jetzt ist es einem Physiker-Team im Forschungszentrum Rossendorf (FZR) in Zusammenarbeit mit Kollegen vom Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW) erstmalig gelungen, diese Richtung mit Hilfe der Ionenbestrahlung bei Weichmagneten gezielt und punktgenau zu verändern.


Materialien mit neuartigen magnetischen Eigenschaften sind für die verschiedensten Anwendungen von großem Interesse. Das am besten bekannte Beispiel ist dabei sicherlich die magnetische Datenspeichertechnologie, bei der es darauf ankommt, die immer größer werdenden Datenmengen auf immer kleineren Medien dauerhaft zu speichern. Hierfür setzt man heute vornehmlich ferromagnetische Materialien wie z.B. Kobalt ein. Damit Computer-Festplatten ebenso wie die Speichermedien für Digitalkameras oder Handys zukünftig noch mehr Daten abspeichern können, sind allerdings verstärkt neue Materialien bzw. neue Technologien gefragt. Dazu müssen zunehmend Materialien künstlich hergestellt oder auf einer Mikrometer-Skala modifiziert werden, die so in der Natur nicht vorkommen.

Dr. Jürgen Fassbender ist Spezialist auf dem Gebiet der Nanofunktionsschichten und seit kurzem auch Leiter der gleichnamigen Abteilung im Forschungszentrum Rossendorf. Er forscht daran, mit Hilfe von Ionenstrahlen (das sind schnelle geladene Atome) superdünne Schichten mit neuen magnetischen Eigenschaften herzustellen. Ziel dieser Arbeiten ist es, neuartige Materialien für die magnetische Sensorik (z. B. ABS und weitere Winkel- und Drehsensoren für Fahrzeuge), die magnetische Speichertechnologie (z. B. Computer-Festplatten) oder die Spintronik (Kombination der in der Mikroelektronik gängigen Silizium-Technologie mit neuen magnetischen Materialien) zu entwickeln.


Eine zukunftsträchtige Materialklasse sind die so genannten amorphen weichmagnetischen Schichten, wobei amorph bedeutet, dass die Atome nicht wie bei einem Kristall in einer gleichmäßigen Gitterstruktur angeordnet sind. Heute kommen diese Materialien bei magnetischen Sensoren und elektronischen Hochfrequenz-Bauteilen zum Einsatz. Es handelt sich hierbei zumeist um Legierungen aus Kobalt und Eisen mit Zusätzen von Bor bzw. Silizium, um das ansonsten kristalline Material in einen amorphen Zustand, ähnlich einem Glas, zu überführen. Nur dann werden die geforderten weichmagnetischen Eigenschaften mit einer Magnetisierungsachse in einer Vorzugsrichtung erzielt. Dies ist bereits seit vielen Jahren bekannt. Für viele Anwendungen wären jedoch unterschiedliche Magnetisierungsachsen oder maßgeschneiderte Magnetisierungsachsen an verschiedenen, nur wenige Mikrometer auseinander liegenden Stellen einer einzigen Probe günstig.

Dr. Jürgen Fassbender und sein Kollege Dr. Jeffrey McCord vom IFW konnten nun zeigen, dass eine solche rein magnetische Mikrostrukturierung mit Hilfe der Ionenbestrahlung unter gleichzeitiger Anlegung eines Magnetfelds erzielt werden kann. Das angelegte Magnetfeld richtet bei der Ionenbestrahlung die Vorzugsrichtung der Magnetisierung im bestrahlten Material neu aus. Damit das nicht auf der ganzen Probe geschieht, wird vor der Bestrahlung eine dünne Maske auf die Probe aufgebracht, die mikrometerkleine Löcher enthält. Nur an diesen Stellen durchdringen die Ionen die magnetische Schicht und können dort die magnetischen Eigenschaften beeinflussen. Schematisch ist diese Vorgehensweise in (a) demonstriert. Das Ergebnis ist eine weichmagnetische dünne Schicht, die dauerhaft unterschiedliche magnetische Vorzugsrichtungen aufweist. Dies ist am Beispiel von 20 Mikrometer großen, bestrahlten Kreisen mit horizontaler Vorzugsrichtung in einer unbestrahlten Umgebung mit vertikaler Vorzugsrichtung (b) gezeigt. Die mikroskopische Aufnahme zeigt die Verteilung der Magnetisierungsrichtungen (c, d), die in den entsprechenden Bereichen bevorzugt horizontal bzw. vertikal ausgerichtet sind.

Damit ist es erstmalig bei derartigen Weichmagneten gelungen, den magnetischen Materialparameter der Vorzugsrichtung auf einer Mikrometer-Längenskala gezielt und maßgeschneidert zu verändern. In Zukunft sollen die Grenzen der Miniaturisierung dieser Technik und gleichzeitig konkrete Einsatzmöglichkeiten in der Sensortechnologie der Zukunft ausgelotet werden.

Ansprechpartner im FZR:
Dr. Jürgen Fassbender
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260 - 3096; Email: j.fassbender@fz-rossendorf.de

Ansprechpartner im IFW:
Dr. Jeffrey McCord
Institut für Metallische Werkstoffe
Tel.: 0351 4659 - 204; Email: j.mccord@ifw-dresden.de

Der Fachartikel ist erschienen in: Applied Physics Letters 86, 162502 (2005).
Diese Pressemitteilung finden Sie auch auf der Internet-Seite http://www.fz-rossendorf.de in der Rubrik "Aktuelles".

Pressekontakt im FZR:
Dr. Christine Bohnet
Tel.: 0351 260 - 2450 oder 0160 969 288 56; Email: c.bohnet@fz-rossendorf.de

Pressekontakt im IFW:
Dr. Carola Langer
Tel.: 0351 4659 - 234; Email: c.langer@ifw-dresden.de

Information:
Das Forschungszentrum Rossendorf (FZR) ist ebenso wie das Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) ein Leibniz-Institut. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute beschäftigen rund 12.500 Mitarbeiter und haben einen Gesamtetat von 950 Millionen Euro (Stand 1.1.2005).

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fz-rossendorf.de
http://www.ifw-dresden.de

Weitere Berichte zu: FZR IFW Leibniz-Institut Vorzugsrichtung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten