Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Materialien magnetisch strukturiert

17.05.2005


Schema


Mikroskopische Aufnahme der Probe


Der Magnetismus ist, ebenso wie die Härte, die Farbe oder die elektrische Leitfähigkeit, eine wichtige physikalische Eigenschaft eines Materials. Weist ein Material eine magnetische Vorzugsrichtung auf, so kann es wie eine Kompassnadel zur Bestimmung des Erdmagnetfelds "magnetisiert" werden. Jetzt ist es einem Physiker-Team im Forschungszentrum Rossendorf (FZR) in Zusammenarbeit mit Kollegen vom Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW) erstmalig gelungen, diese Richtung mit Hilfe der Ionenbestrahlung bei Weichmagneten gezielt und punktgenau zu verändern.


Materialien mit neuartigen magnetischen Eigenschaften sind für die verschiedensten Anwendungen von großem Interesse. Das am besten bekannte Beispiel ist dabei sicherlich die magnetische Datenspeichertechnologie, bei der es darauf ankommt, die immer größer werdenden Datenmengen auf immer kleineren Medien dauerhaft zu speichern. Hierfür setzt man heute vornehmlich ferromagnetische Materialien wie z.B. Kobalt ein. Damit Computer-Festplatten ebenso wie die Speichermedien für Digitalkameras oder Handys zukünftig noch mehr Daten abspeichern können, sind allerdings verstärkt neue Materialien bzw. neue Technologien gefragt. Dazu müssen zunehmend Materialien künstlich hergestellt oder auf einer Mikrometer-Skala modifiziert werden, die so in der Natur nicht vorkommen.

Dr. Jürgen Fassbender ist Spezialist auf dem Gebiet der Nanofunktionsschichten und seit kurzem auch Leiter der gleichnamigen Abteilung im Forschungszentrum Rossendorf. Er forscht daran, mit Hilfe von Ionenstrahlen (das sind schnelle geladene Atome) superdünne Schichten mit neuen magnetischen Eigenschaften herzustellen. Ziel dieser Arbeiten ist es, neuartige Materialien für die magnetische Sensorik (z. B. ABS und weitere Winkel- und Drehsensoren für Fahrzeuge), die magnetische Speichertechnologie (z. B. Computer-Festplatten) oder die Spintronik (Kombination der in der Mikroelektronik gängigen Silizium-Technologie mit neuen magnetischen Materialien) zu entwickeln.


Eine zukunftsträchtige Materialklasse sind die so genannten amorphen weichmagnetischen Schichten, wobei amorph bedeutet, dass die Atome nicht wie bei einem Kristall in einer gleichmäßigen Gitterstruktur angeordnet sind. Heute kommen diese Materialien bei magnetischen Sensoren und elektronischen Hochfrequenz-Bauteilen zum Einsatz. Es handelt sich hierbei zumeist um Legierungen aus Kobalt und Eisen mit Zusätzen von Bor bzw. Silizium, um das ansonsten kristalline Material in einen amorphen Zustand, ähnlich einem Glas, zu überführen. Nur dann werden die geforderten weichmagnetischen Eigenschaften mit einer Magnetisierungsachse in einer Vorzugsrichtung erzielt. Dies ist bereits seit vielen Jahren bekannt. Für viele Anwendungen wären jedoch unterschiedliche Magnetisierungsachsen oder maßgeschneiderte Magnetisierungsachsen an verschiedenen, nur wenige Mikrometer auseinander liegenden Stellen einer einzigen Probe günstig.

Dr. Jürgen Fassbender und sein Kollege Dr. Jeffrey McCord vom IFW konnten nun zeigen, dass eine solche rein magnetische Mikrostrukturierung mit Hilfe der Ionenbestrahlung unter gleichzeitiger Anlegung eines Magnetfelds erzielt werden kann. Das angelegte Magnetfeld richtet bei der Ionenbestrahlung die Vorzugsrichtung der Magnetisierung im bestrahlten Material neu aus. Damit das nicht auf der ganzen Probe geschieht, wird vor der Bestrahlung eine dünne Maske auf die Probe aufgebracht, die mikrometerkleine Löcher enthält. Nur an diesen Stellen durchdringen die Ionen die magnetische Schicht und können dort die magnetischen Eigenschaften beeinflussen. Schematisch ist diese Vorgehensweise in (a) demonstriert. Das Ergebnis ist eine weichmagnetische dünne Schicht, die dauerhaft unterschiedliche magnetische Vorzugsrichtungen aufweist. Dies ist am Beispiel von 20 Mikrometer großen, bestrahlten Kreisen mit horizontaler Vorzugsrichtung in einer unbestrahlten Umgebung mit vertikaler Vorzugsrichtung (b) gezeigt. Die mikroskopische Aufnahme zeigt die Verteilung der Magnetisierungsrichtungen (c, d), die in den entsprechenden Bereichen bevorzugt horizontal bzw. vertikal ausgerichtet sind.

Damit ist es erstmalig bei derartigen Weichmagneten gelungen, den magnetischen Materialparameter der Vorzugsrichtung auf einer Mikrometer-Längenskala gezielt und maßgeschneidert zu verändern. In Zukunft sollen die Grenzen der Miniaturisierung dieser Technik und gleichzeitig konkrete Einsatzmöglichkeiten in der Sensortechnologie der Zukunft ausgelotet werden.

Ansprechpartner im FZR:
Dr. Jürgen Fassbender
Institut für Ionenstrahlphysik und Materialforschung
Tel.: 0351 260 - 3096; Email: j.fassbender@fz-rossendorf.de

Ansprechpartner im IFW:
Dr. Jeffrey McCord
Institut für Metallische Werkstoffe
Tel.: 0351 4659 - 204; Email: j.mccord@ifw-dresden.de

Der Fachartikel ist erschienen in: Applied Physics Letters 86, 162502 (2005).
Diese Pressemitteilung finden Sie auch auf der Internet-Seite http://www.fz-rossendorf.de in der Rubrik "Aktuelles".

Pressekontakt im FZR:
Dr. Christine Bohnet
Tel.: 0351 260 - 2450 oder 0160 969 288 56; Email: c.bohnet@fz-rossendorf.de

Pressekontakt im IFW:
Dr. Carola Langer
Tel.: 0351 4659 - 234; Email: c.langer@ifw-dresden.de

Information:
Das Forschungszentrum Rossendorf (FZR) ist ebenso wie das Leibniz-Institut für Festkörper- und Werkstoffforschung (IFW) ein Leibniz-Institut. Zur Leibniz-Gemeinschaft gehören 84 außeruniversitäre Forschungsinstitute und Serviceeinrichtungen für die Forschung. Leibniz-Institute arbeiten interdisziplinär und verbinden Grundlagenforschung mit Anwendungsnähe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung, weshalb sie von Bund und Länder gemeinsam gefördert werden. Die Leibniz-Institute beschäftigen rund 12.500 Mitarbeiter und haben einen Gesamtetat von 950 Millionen Euro (Stand 1.1.2005).

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fz-rossendorf.de
http://www.ifw-dresden.de

Weitere Berichte zu: FZR IFW Leibniz-Institut Vorzugsrichtung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Perowskit-Solarzellen: Es muss gar nicht perfekt sein
15.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Fraunhofer IMWS testet umweltfreundliche Mikroplastik-Alternativen in Kosmetikartikeln
11.01.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie