Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Materialien und Werkstoffe fest im Blick

05.07.2001


VolkswagenStiftung bewilligt 20 Millionen Euro für neue Forschungsvorhaben.
In den Natur- und Ingenieurwissenschaften erstmals Bewilligungen im neu eingerichteten Schwerpunkt "Komplexe Materialien"

Das Prinzip, aus unterschiedlichen Materialien einen Werkstoff zu konstruieren, der ganz andere Eigenschaften besitzt als jede einzelne der verwendeten Komponenten, ist nicht neu - man denke etwa an Verbundwerkstoffe aus Glasfaser und Kunststoff. Bislang nicht erreichte Gestaltungsspielräume in der Materialforschung ergeben sich nun durch die Möglichkeit, Materie bis in den Nanometerbereich kontrollieren und damit die Grenzflächen zwischen beliebigen Materialien beherrschen zu können. Mit dem im vergangenen Jahr eingerichteten Schwerpunkt "Komplexe Materialien: Verbundprojekte der Natur-, Ingenieur- und Biowissenschaften" will die VolkswagenStiftung Forscher dazu anregen, sich mit der Entwicklung neuer Materialien zu beschäftigen. Auf der Basis von Erkenntnissen, die aus bislang ungewöhnlichen Kooperationen von Wissenschaftlern unterschiedlicher Disziplinen hervorgehen sollen, könnten neuartige Struktur- und Funktionswerkstoffe entstehen für eine Fülle möglicher Anwendungen: etwa in der Katalyse, der Sensorik, der Informationsverarbeitung - oder auch auf dem Gebiet der Medizin.

Für dieses grundlegende Verständnis stehen die ersten zehn Vorhaben über insgesamt 4.726.000 Euro, die die Stiftung jetzt auf dem Gebiet der komplexen Materialien fördert. Drei Vorhaben stellen wir Ihnen im Folgenden vor.

Ein Forscherteam aus Stuttgart, München und Heidelberg hat sich zum Ziel gesetzt, eine Verbindung zwischen der Mechanik des Zytoskeletts - also den stabilisierenden Bauteilen in unseren Körperzellen - und der Mikromechanik von faserverstärkten Materialien zu knüpfen. Der Einbau von Fasern in Metalle, Keramiken und Polymermaterialien kann die mechanischen Eigenschaften dieser Stoffe wesentlich verbessern, und biologische Gewebe und Zellen nutzen ihre Faserverstärkungen sogar aktiv, um sich besser auf äußere Einwirkungen einzustellen. Das besondere Augenmerk der Wissenschaftler gilt der Selbstorganisation passiver und aktiver faserverstärkter Vernetzungen, die von unterschiedlichen "Vernetzern" - wie Myosin und ATP/ADP - vermittelt werden oder sich auf Grund einer bestimmten Temperatur einstellen. So soll es letztlich gelingen, die Kraftverteilung in einzelnen Kompartimenten einer lebenden Zelle nachzuahmen. Am Ende der Entwicklungskette könnten einmal ganz neuartige Materialien stehen, die mithin "adaptiv", also quasi sich selbst steuernd und ausrichtend, auf äußere Kräfte reagieren. Die VolkswagenStiftung unterstützt das Projekt drei Jahre lang mit 505.000 Euro.

Die Wissenschaftler eines weiteren Kooperationsprojekts, es wird von der VolkswagenStiftung mit knapp 600.000 Euro und ebenfalls über einen Zeitraum von drei Jahren gefördert, haben solartechnische Anwendungen im Blick. Auf dem Weg dorthin konzentrieren sie sich zunächst darauf, mit Hilfe ganz unterschiedlicher Untersuchungsansätze - zum Beispiel photoelektrochemischer Experimente oder elektrischer Charakterisierungsmethoden - schrittweise die Leistung von Photoelektroden zu verbessern. Letztlich soll es möglich sein Kriterien abzuleiten "für eine Präparation von Elektroden mit einer für die Anwendung in photoelektrochemischen Zellen zur Solarenergiekonversion optimierten Effizienz", wie die Forscher aus Bremen und Oldenburg betonen. Sie kommen aus unterschiedlichen Disziplinen: der organischen und der physikalischen Chemie sowie der Festkörperphysik. Ins Boot geholt haben sie sich zudem noch Ingenieurwissenschaftler der Gifu University in Japan.

Wissenschaftler aus vier Forschungseinrichtungen in Mainz, Frankfurt, Ulm und Heidelberg haben sich zusammengetan, um synthetische Hydrogelschichten auf elastischen, mikrostrukturierten Substraten zu entwickeln.
Was sich kompliziert anhört, soll einmal als biologisch funktionale Oberfläche einsetzbar sein mit dem Ziel, zum Beispiel das Wachstum von Zellen des Körpergewebes - wie Fibroblasten und Keratinocyten - zu manipulieren: etwa durch die Vorgabe einer bestimmten geometrischen Struktur oder durch gezielte mechanische Reize. Die Forscher - organische und Physikochemiker sowie Zellbiologen - streben an, mit Blick auf mögliche Anwendungen die Zellen so zu beeinflussen, das diese ihre Umgebung nicht mehr wie im Normalfall steuern können. Insbesondere aber soll das neue Material für Untersuchungen des zellulären Verhaltens bei bio(chemischen), topologischen und mechanischen Reizen einsetzbar sein. Von der VolkswagenStiftung erhalten sie für ihr auf drei Jahre angelegtes Vorhaben 676.500 Euro.

Generell ist davon auszugehen, dass solch multifunktionale Materialien und maßgeschneiderte Werkstoffe in den kommenden Jahren eine Schlüsselrolle bei der Entwicklung neuer Technologien einnehmen werden - insbesondere dann, wenn es wie bei den hier beispielhaft vorgestellten Projekten gelingen sollte, vor dem Hintergrund erwünschter Diszilinüberschreitender Zusammenarbeit physikalisch-chemisch erzeugte Materialien und biologische Materie zu kombinieren.

Über weitere Bewilligungen in den Materialwissenschaften informieren wir Sie auf unserer Homepage unter www.volkswagenstiftung.de


Schwerpunkt "Intra- und intermolekulare Elektronenübertragung"

Des Weiteren wurden sechs Vorhaben über 1,28 Millionen Euro im Schwerpunkt "Intra- und intermolekulare Elektronenübertragung" in die Förderung genommen. Darunter die beiden Folgenden:

Ein derzeit viel diskutiertes Thema des biologischen Elektronentransportes ist, inwieweit die Proteinmatrix darin involviert ist oder diese ihn möglicherweise sogar bestimmt. Eine international zusammengesetzte Forschergruppe der University of Leiden und des Max-Planck-Instituts für molekulare Physiologie in Dortmund geht in diesem Kontext der Frage nach, wie bei photosynthetisch aktiven Mikroorganismen solare in chemische Energie umgewandelt wird - und zwar unter dem Blickwinkel der Regulierung der Elektronentransportcharakteristika durch die Proteinmatrix. Insbesondere sollen die Rolle der Proteindynamik und der Polypeptidbewegungen untersucht werden. Ferner ist es das Ziel der Forscher, die Distanzabhängigkeit des Elektronentransfers im Inneren des photochemischen Reaktionszentrums zu bestimmen. Dabei werden die biochemischen und biophysikalischen Experimente in Leiden durchgeführt, die Untersuchung der Spektren sowie molekulardynamische Berechnungen sind der Dortmunder Arbeitsgruppe zugeordnet. Die Wissenschaftler werden von der VolkswagenStiftung drei Jahre lang mit insgesamt 312.400 Euro unterstützt.

Mit 138.000 Euro über den gleichen Zeitraum gefördert wird ein Vorhaben an der Universität Würzburg, das sich mit dem Elektronen- oder Lochtransfer zwischen zwei Redoxzentren beschäftigt. Trotz umfangreicher Forschungen auf diesem Gebiet in den vergangenen Jahren ist noch nicht geklärt, wie und in welchem Ausmaß die chemischen und physikochemischen Eigenheiten der Brücke zwischen den Redoxzentren die Kinetik des Elektronentransfers bestimmen. Dabei müssen zwei vollkommen verschiedene Mechanismen betrachtet werden. Einmal ist es der "Hopping-Mechanismus", bei dem Plätze zwischen den beiden Redoxzentren als Positionen dienen, wo das Elektron oder das Loch während seiner Wanderung lokalisiert ist. Zum anderen ist es der "Superexchange-Mechanismus", in dem "virtuelle" Zustände der Brücke dazu dienen, den Ladungstransfer durch das Mischen von Donor- und Akzeptorzuständen zu vermitteln - wobei die Ladung jedoch nie auf der Brücke lokalisiert ist. Es gibt erste Beispiele dafür, dass sich der Elektronentransfer gezielt von einem Superexchange- in einen Hopping-Mechanismus überführen lässt. Ein Ziel des Forschers ist es daher, den Mechanismus entsprechend beeinflussen und schalten zu können.

Kontakt VolkswagenStiftung: Christian Jung, Presse- und Öffentlichkeitsarbeit, Tel.: 0511/8381-380,
 E-Mail: jung@volkswagenstiftung.de

Kontakte an den Universitäten und wissenschaftlichen Institutionen:
Priv.-Doz. Dr. Derck Schlettwein
Universität Oldenburg
Physikaliche Chemie 1
Telefon: 04 41/7 98 39 63
Fax: 04 41/7 98 28 09

Prof. Dr. Dieter Wöhrle
Universität Bremen
Institut für Organische und
Makromolekulare Chemie
Telefon: 04 21/2 18 23 67
Fax: 04 21/2 18 49 18

Prof. Dr. Jürgen Parisi
Universität Oldenburg
Energie- und Halbleiterforschung
Telefon: 04 41/7 98 35 41
Fax: 04 41/7 98 33 26

Dr. Harm-Anton Klok
MPI für Polymerforschung, Mainz
Telefon: 0 61 31/37 93 06
Fax: 0 61 31/37 91 00

Priv.-Doz. Dr. August Bernd
Universität Frankfurt am Main
Klinikum, Zentrum für
Dermatologie und Venerologie
Telefon: 0 69/63 01 55 85
Fax: 0 69/63 01 64 66

Prof. Dr. Martin Möller
Universität Ulm
Organische Chemie III
Telefon: 07 31/5 02 28 70
Fax: 07 31/5 02 28 83

Prof. Dr. Joachim Spatz
Universität Heidelberg
Biophysikalische Chemie
Telefon: 0 62 21/54 84 61
Fax: 0 62 21/54 61 99

Priv.-Doz. Dr.
Heinz-Jürgen Steinhoff
MPI für molekulare Physiologie,
Dortmund
Telefon: 02 34/3 22 44 63
Fax: 02 34/3 21 46 26

Prof. Dr. Arnold J. Hoff
University of Leiden
Department of Biophysics
Telefon: +31/7 15 27 59 55
Fax: +31/7 15 27 58 19

Prof. Dr. Christoph Lambert
Universität Würzburg
Institut für Organische Chemie
Telefon: 09 31/8 88 53 18
Fax: 09 31/8 88 46 06

Dipl.Biol. Christian Jung | idw

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie

Vom Feld in die Schule: Aktuelle Forschung zu moderner Landwirtschaft für den Unterricht

23.01.2017 | Bildung Wissenschaft

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungsnachrichten