Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ausgekochter Stahl für das Auto von morgen

20.10.2004


Wissenschafter wollen mit neuartigen Materialien den Fahrzeugbau revolutionieren / Neue MaxPlanckForschung erschienen


Dehnbar wie Gummi: Sehr feine und gleichmäßige Körnchen (Kristallite) verleihen diesen Stählen "Superplastizität". Oben das ursprüngliche Werkstück, in der Mitte eine Gleichmaßdehnung um 850, unten die Bruchdehnung um 1025 Prozent.

Bild: MaxPlanckForschung/MPI für Eisenforschung


Betrieb wie im Stahlwerk: Am Max-Planck-Institut für Eisenforschung kochen und gießen Wissenschaftler bis zu zentnerschwere Stahlproben, um anschließend deren Eigenschaften zu untersuchen.

Bild: MaxPlanckForschung/Wolfgang Filser



Der Treibstoffverbrauch gehört inzwischen zu den wichtigen Entscheidungskriterien beim Kauf eines neuen Wagens. Und tatsächlich brauchen die Fahrzeuge von Jahr zu Jahr bei gleicher Leistung weniger Kraftstoff. Dazu trägt wesentlich die Reduzierung des Fahrzeugsgewichts bei. Deshalb suchen die Autohersteller nach leichteren Materialien, die im Idealfall nicht nur weniger wiegen als herkömmliche Werkstoffe, sondern zugleich bessere Eigenschaften aufweisen. Eine solche Werkstoffklasse haben Wissenschaftler um Georg Frommeyer vom Max-Planck-Institut für Eisenforschung in Düsseldorf mit ihren neuartigen Leichtbaustählen entwickelt: Diese sind sehr leicht, zudem aber extrem stabil und besonders dehnungsfähig; große Stahlkonzerne loben sie als "deutlichen Entwicklungssprung" für die Fahrzeugproduktion. Davon berichtet die neue Ausgabe des Wissenschaftsmagazins MaxPlanckForschung (3/2004).



Die Stahlhersteller haben längst erkannt, dass ihnen Aluminium und neue Materialien wie Magnesium oder Kunststoffe zunehmend Konkurrenz machen. Um im Rennen zu bleiben, müssen ihre Stähle leichter, fester und stabiler sein als die Produkte der Konkurrenten. Zudem wachsen die Ansprüche an Sicherheit und Crash-Stabilität. Stähle sollen fest genug sein, um das Gewicht des Fahrzeugs zu tragen, ohne sich zu verformen oder zu schwingen. Sie sollen starr genug sein, um die Insassen bei einer Kollision wie eine Schutzhülle zu umgeben. Und bei einem Unfall sollen sie sich kalkulierbar verformen, um die Aufprallenergie zu schlucken. Freilich lassen sich nicht alle Eigenschaften in einem einzigen Werkstoff bündeln. Der Stahl aus den Düsseldorfer Max-Planck-Labors aber ist ein wahrer Multifunktions-Werkstoff, der nicht alle, aber doch ganz unterschiedliche Funktionen übernehmen kann.

Aus langjähriger Erfahrung und thermodynamischen Berechnungen folgerte Georg Frommeyer, Direktor am Max-Planck-Institut für Eisenforschung, dass sich für die neuen Leichtbaustähle insbesondere eine Mischung (Legierung) von Eisen mit Mangan, Silizium und Aluminium eignen müsste. Diese sollten bestimmte Kristallstrukturen bilden, die dem Stahl die gewünschten Eigenschaften verleihen. Die Versuche glückten: Durch leichte Variation der Mischungsverhältnisse und Produktionsbedingungen ließen sich zwei Stahl-Charaktere mit bislang unerreichten Eigenschaften erzeugen.

Als besonders fest erwies sich zum einen Stahl mit einem Gehalt von 15 Prozent Mangan und jeweils 3 Prozent Aluminium und Silizium: Er lässt sich um mehr als 50 Prozent dehnen. Zugleich verfestigt er sich stark, ohne zu zerreißen. Er widersteht Spannungen von bis zu 1100 Megapascal - entsprechend etwa dem Gewicht von zehn Elefantenbullen auf einer Briefmarke. Herkömmliche höherfeste Karosseriestähle reißen bereits bei etwa 700 Megapascal. Der andere Stahl mit einem Anteil von 25 Prozent Mangan und jeweils 3 Prozent Aluminium und Silizium verfestigte sich zwar nicht so stark, ließ sich aber um etwa 90 Prozent in die Länge ziehen, ohne zu zerreißen. Frommeyer: "Eine solche Duktilität, also Dehnbarkeit, erreicht nicht einmal Gold, das als ausgesprochen duktil gilt. Bei 60 Prozent Dehnung ist Schluss."

Das macht diesen Stahl zum idealen Material für Crash-Bauteile im Motorraum, die sich bei einem Aufprall gezielt zusammenfalten. Hier ist hohes Energieabsorptions-Vermögen gefragt - und das besitzt Stahl-Typ Nummer 2. Beinahe noch wichtiger ist seine Fähigkeit, Kräfte extrem schnell aufzunehmen, selbst bei einem Aufprall mit hoher Geschwindigkeit. Frommeyers Arbeitsgruppe kooperiert seit längerer Zeit mit der Salzgitter AG und der ThyssenKrupp Stahl AG. Die Hersteller sind davon überzeugt, dass sich mit den neuen Stählen Bauteile realisieren lassen, die sogar leichter als Aluminiumkomponenten sind. Immerhin kommt man dank der verbesserten Eigenschaften zu dünneren Blechen. Die Stahlfirmen rechnen fest damit, dass Frommeyers Legierungen bei den neuen Fahrzeuggenerationen ab 2009 oder 2010 zum Einsatz kommen.

Eine weitere Spezialität aus den Düsseldorfer Labors sind Stähle, die sich fast wie ein Gummiband um bis zu 1000 Prozent dehnen lassen, ohne zu brechen. Diese so genannte Superplastizität ist auf sehr feine und gleichmäßige Körnchen (Kristallite) im Stahl zurückzuführen. Unter bestimmten Temperaturen und Umformbedingungen bilden sich gleichmäßig rundliche Kristallite in Mikrometergröße. Dehnt man den Stahl, gleiten und rotieren die Kristallite leicht aneinander vorbei. Superplastische Stähle lassen sich unter anderem zu Getriebeteilen wie Ritzeln schmieden. Ihr Vorteil: Da sie sich so stark dehnen, können sie leichter in Form gebracht werden. Die Umformwerkzeuge verschleißen dadurch weniger schnell. Das gleiche gilt für die Nachbearbeitung an Dreh- oder Fräsmaschinen. Die Stähle können zudem bei geringeren Temperaturen als andere geschmiedet werden. Das spart Energie. Bislang nutzen Hersteller die superplastischen Stähle vor allem für den Bau von Maschinen. Inzwischen zeigen aber auch die Automobilkonzerne Interesse an dem reißfesten Hightech-Material.

Eine ausführliche Version des Textes dieser Pressemitteilung finden Sie in der neuesten Ausgabe von MaxPlanckForschung (3/2004). Das 76 Seiten umfassende Heft beschäftigt sich im Fokus mit dem Thema "Zellverkehr" - mit jenen winzigen Eiweißmaschinen also, die in unserem Körper Schwerstarbeit leisten und ohne die wir zum Beispiel den Arm nicht beugen oder strecken könnten. Dass Globalisierung keineswegs eine Erfindung des späten 20. Jahrhunderts ist, lesen Sie in einem Essay unter der Rubrik "Zur Sache". Weitere Themen: Ein Kongressbericht über die bei Pflanzenforschern so beliebte Ackerschmalwand, ein Beitrag zur aktuellen Debatte über die Einkommensteuer sowie ein Interview zur sozialen Sicherheit in Deutschland ("Kündigungsschutz wird überwertet").

MaxPlanckForschung erscheint viermal pro Jahr. Das Wissenschaftsmagazin kann bei der Pressestelle der Max-Planck-Gesellschaft oder über unser Webformular abonniert werden. Der Bezug ist kostenfrei.

Originalveröffentlichung:

Gräßel, Oliver, "Entwicklung und Charakterisierung neuer TRIP/TWIP-Leichtbaustähle auf der Basis Fe-Mn-Al-Si", Clausthal, Techn. Univ., Diss., 2000, ISBN 3-89720-404-5

Weitere Informationen erhalten Sie von:

Prof. Dr. Georg Frommeyer
Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf
Tel.: 0211 6792-214
Fax: 0211 6792-295
E-Mail: frommeyer@mpie.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://mpie.de

Weitere Berichte zu: ALUMINIUM Kristallite Mangan MaxPlanckForschung Silizium Stahl

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops