Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals Katalysator bei der Arbeit zugeschaut

29.09.2004


Experimentell gemessene und nun berechnete Aktivität des Katalysators (oben links), sowie die zugehörige atomare Zusammensetzung der Oberfläche unter Bedingungen optimaler katalytischer Performance (unten rechts). Der die Gesamtaktivität dann dominierende Reaktionsschritt zwischen O und CO auf der Oberfläche ist unten links dargestellt. Die Rechnungen basieren auf den Details aller möglichen Elementarprozesse, um die mesoskopische atomare Zusammensetzung der Oberfläche zu ermitteln, die wiederum zu einer makroskopisch messbaren Reaktionsrate führt.
Bild: Fritz-Haber-Institut


Berliner Max-Planck-Forschern gelingen fundamentale Einblicke in die Wirkungsweise von Katalysatoren


In der theoretischen Materialwissenschaft ist ein seit Jahren angestrebter Brückenschlag gelungen: Eine katalytische Reaktion lässt sich erstmals unter realistischen Temperatur- und Druckbedingungen verfolgen, beginnend bei den elektronischen Bindungen über die atomaren Prozesse bis hin zur mesoskopischen Beschreibung der letztlich messbaren katalytischen Aktivität. Forscher des Berliner Fritz-Haber-Instituts der Max-Planck-Gesellschaft sowie des FOM-Instituts AMOLF in Amsterdam/Niederlande haben dazu die Theorien und Computerprogramme entwickelt. Mit Hilfe eines Hochleistungsrechners am Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG) konnten sie an einem Modellkatalysator erstmals die gesamte chemische Reaktion simulieren und die Ergebnisse visuell darstellen. Überraschend war dabei, wie stark die atomaren Prozesse auf der Oberfläche voneinander abhängen, was von ausschlaggebender Bedeutung für die daraus resultierende Wirkung des Katalysators ist (Physical Review Letters, 10. September 2004).


Katalysatoren sind von herausragender Bedeutung für viele technische Prozesse in der chemischen Industrie und der Abgasreinigung. Dennoch kennt man ihre Wirkungsweise noch nicht bis ins Detail. Das liegt vor allem daran, dass experimentelle Untersuchungen auf atomarer Ebene unter realen Temperatur- und Druckbedingungen bei der Katalyse nicht möglich sind, sondern bestenfalls unter den künstlichen Bedingungen des Ultrahochvakuums.


Ein Katalysator ist ein Zusatzstoff, der eine chemische Reaktion beschleunigt, ohne selbst dabei verbraucht zu werden. Was aber an seiner Oberfläche im Detail vor sich geht, also wie es letztendlich zu der erwünschten chemischen Reaktion kommt, war bislang weitgehend unbekannt. Um die Oberflächenreaktionen zu verstehen, ist daher zunächst eine genaue Kenntnis der einzelnen atomaren Prozesse notwendig. Die erwirbt man neben experimentellen Untersuchungen mit quantenmechanischen Rechenverfahren wie der Dichtefunktionaltheorie (Walter Kohn erhielt dafür 1998 den Nobelpreis für Chemie).

Doch trotz des Einsatzes von Hochleistungsrechnern kann man die relevanten molekularen Prozesse nur über extrem kurze Zeiträume von weniger als einer Hundertmillionstel Sekunde verfolgen. Das reicht bei weitem nicht aus, um einen - wie sich jetzt herausstellte - wesentlichen Aspekt - der Katalysatorwirkung zu simulieren, nämlich das kollektiv-chaotische Zusammenspiel der vielen verschiedenen Prozesse. Die Herausforderung bestand darin, die Rechenverfahren, die sich bei der Untersuchung einzelner molekularer Prozesse als zuverlässig erwiesen haben, mit statistischen Methoden zu verbinden. Letztere sind weniger genau, machen es aber möglich, größere Oberflächenbereiche und Zeiträume bis in den Sekundenbereich zu überblicken.

Die Wissenschaftler am Fritz-Haber-Institut haben diese Verknüpfung der Methoden auf die Oxidation von Kohlenmonoxid, eine der Hauptreaktionen in Autoabgaskatalysatoren, auf einer Rutheniumoberfläche angewandt. Ihnen gelang eine statistische Simulation der verschiedenen atomaren Prozesse über Zeiträume von Pikosekunden (ein Millionstel einer Millionstel Sekunde) bis Sekunden, also über 12 Größenordnungen. Als Grundlage diente eine genaue dichtefunktionaltheoretische Beschreibung der Bildung und des Aufbrechens der unterschiedlichen chemischen Bindungen.

Hierbei kamen die Forscher zu einem überraschenden Befund: Der aus Experimenten bekannte hohe Wirkungsgrad des Modellkatalysators ließ sich nur dann theoretisch wiederholen, wenn das enge Zusammenspiel der Elementarprozesse zu einer bestimmten Zusammensetzung der Atome auf der Oberfläche führte (vgl. Abb.), die sich entscheidend von experimentellen Befunden unter Ultrahochvakuumsbedingungen bzw. von früheren theoretischen Ergebnissen, die das Wechselspiel der Prozesse nicht berücksichtigten, unterscheidet.

Die jetzt erstmals gelungene explizite Behandlung des Zusammenspiels aller Prozesse stellt somit einen entscheidenden Aspekt in der theoretischen Modellierung dar. Denn, wie sich herausstellte, kann nur in der nun gefundenen speziellen Konstellation der Atome ein bestimmter Reaktionsprozess ablaufen, der für sich allein, also ohne das Zusammenspiel aller Prozesse, gar nicht bedeutsam erscheint und keineswegs einen optimalen katalytischen Effekt hätte. Der errechnete hohe Wirkungsgrad des Katalysators stimmt bemerkenswert gut mit den experimentell gewonnenen Daten überein.

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Katalysator Modellkatalysator Temperatur- Wirkungsgrad

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscherin entwickelt elektronische Textilstruktur für Medizinprodukte
17.02.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Untergrund beeinflusst Halbleiter-Monolagen
16.02.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie