Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals Katalysator bei der Arbeit zugeschaut

29.09.2004


Experimentell gemessene und nun berechnete Aktivität des Katalysators (oben links), sowie die zugehörige atomare Zusammensetzung der Oberfläche unter Bedingungen optimaler katalytischer Performance (unten rechts). Der die Gesamtaktivität dann dominierende Reaktionsschritt zwischen O und CO auf der Oberfläche ist unten links dargestellt. Die Rechnungen basieren auf den Details aller möglichen Elementarprozesse, um die mesoskopische atomare Zusammensetzung der Oberfläche zu ermitteln, die wiederum zu einer makroskopisch messbaren Reaktionsrate führt.
Bild: Fritz-Haber-Institut


Berliner Max-Planck-Forschern gelingen fundamentale Einblicke in die Wirkungsweise von Katalysatoren


In der theoretischen Materialwissenschaft ist ein seit Jahren angestrebter Brückenschlag gelungen: Eine katalytische Reaktion lässt sich erstmals unter realistischen Temperatur- und Druckbedingungen verfolgen, beginnend bei den elektronischen Bindungen über die atomaren Prozesse bis hin zur mesoskopischen Beschreibung der letztlich messbaren katalytischen Aktivität. Forscher des Berliner Fritz-Haber-Instituts der Max-Planck-Gesellschaft sowie des FOM-Instituts AMOLF in Amsterdam/Niederlande haben dazu die Theorien und Computerprogramme entwickelt. Mit Hilfe eines Hochleistungsrechners am Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG) konnten sie an einem Modellkatalysator erstmals die gesamte chemische Reaktion simulieren und die Ergebnisse visuell darstellen. Überraschend war dabei, wie stark die atomaren Prozesse auf der Oberfläche voneinander abhängen, was von ausschlaggebender Bedeutung für die daraus resultierende Wirkung des Katalysators ist (Physical Review Letters, 10. September 2004).


Katalysatoren sind von herausragender Bedeutung für viele technische Prozesse in der chemischen Industrie und der Abgasreinigung. Dennoch kennt man ihre Wirkungsweise noch nicht bis ins Detail. Das liegt vor allem daran, dass experimentelle Untersuchungen auf atomarer Ebene unter realen Temperatur- und Druckbedingungen bei der Katalyse nicht möglich sind, sondern bestenfalls unter den künstlichen Bedingungen des Ultrahochvakuums.


Ein Katalysator ist ein Zusatzstoff, der eine chemische Reaktion beschleunigt, ohne selbst dabei verbraucht zu werden. Was aber an seiner Oberfläche im Detail vor sich geht, also wie es letztendlich zu der erwünschten chemischen Reaktion kommt, war bislang weitgehend unbekannt. Um die Oberflächenreaktionen zu verstehen, ist daher zunächst eine genaue Kenntnis der einzelnen atomaren Prozesse notwendig. Die erwirbt man neben experimentellen Untersuchungen mit quantenmechanischen Rechenverfahren wie der Dichtefunktionaltheorie (Walter Kohn erhielt dafür 1998 den Nobelpreis für Chemie).

Doch trotz des Einsatzes von Hochleistungsrechnern kann man die relevanten molekularen Prozesse nur über extrem kurze Zeiträume von weniger als einer Hundertmillionstel Sekunde verfolgen. Das reicht bei weitem nicht aus, um einen - wie sich jetzt herausstellte - wesentlichen Aspekt - der Katalysatorwirkung zu simulieren, nämlich das kollektiv-chaotische Zusammenspiel der vielen verschiedenen Prozesse. Die Herausforderung bestand darin, die Rechenverfahren, die sich bei der Untersuchung einzelner molekularer Prozesse als zuverlässig erwiesen haben, mit statistischen Methoden zu verbinden. Letztere sind weniger genau, machen es aber möglich, größere Oberflächenbereiche und Zeiträume bis in den Sekundenbereich zu überblicken.

Die Wissenschaftler am Fritz-Haber-Institut haben diese Verknüpfung der Methoden auf die Oxidation von Kohlenmonoxid, eine der Hauptreaktionen in Autoabgaskatalysatoren, auf einer Rutheniumoberfläche angewandt. Ihnen gelang eine statistische Simulation der verschiedenen atomaren Prozesse über Zeiträume von Pikosekunden (ein Millionstel einer Millionstel Sekunde) bis Sekunden, also über 12 Größenordnungen. Als Grundlage diente eine genaue dichtefunktionaltheoretische Beschreibung der Bildung und des Aufbrechens der unterschiedlichen chemischen Bindungen.

Hierbei kamen die Forscher zu einem überraschenden Befund: Der aus Experimenten bekannte hohe Wirkungsgrad des Modellkatalysators ließ sich nur dann theoretisch wiederholen, wenn das enge Zusammenspiel der Elementarprozesse zu einer bestimmten Zusammensetzung der Atome auf der Oberfläche führte (vgl. Abb.), die sich entscheidend von experimentellen Befunden unter Ultrahochvakuumsbedingungen bzw. von früheren theoretischen Ergebnissen, die das Wechselspiel der Prozesse nicht berücksichtigten, unterscheidet.

Die jetzt erstmals gelungene explizite Behandlung des Zusammenspiels aller Prozesse stellt somit einen entscheidenden Aspekt in der theoretischen Modellierung dar. Denn, wie sich herausstellte, kann nur in der nun gefundenen speziellen Konstellation der Atome ein bestimmter Reaktionsprozess ablaufen, der für sich allein, also ohne das Zusammenspiel aller Prozesse, gar nicht bedeutsam erscheint und keineswegs einen optimalen katalytischen Effekt hätte. Der errechnete hohe Wirkungsgrad des Katalysators stimmt bemerkenswert gut mit den experimentell gewonnenen Daten überein.

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Katalysator Modellkatalysator Temperatur- Wirkungsgrad

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences