Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals Katalysator bei der Arbeit zugeschaut

29.09.2004


Experimentell gemessene und nun berechnete Aktivität des Katalysators (oben links), sowie die zugehörige atomare Zusammensetzung der Oberfläche unter Bedingungen optimaler katalytischer Performance (unten rechts). Der die Gesamtaktivität dann dominierende Reaktionsschritt zwischen O und CO auf der Oberfläche ist unten links dargestellt. Die Rechnungen basieren auf den Details aller möglichen Elementarprozesse, um die mesoskopische atomare Zusammensetzung der Oberfläche zu ermitteln, die wiederum zu einer makroskopisch messbaren Reaktionsrate führt.
Bild: Fritz-Haber-Institut


Berliner Max-Planck-Forschern gelingen fundamentale Einblicke in die Wirkungsweise von Katalysatoren


In der theoretischen Materialwissenschaft ist ein seit Jahren angestrebter Brückenschlag gelungen: Eine katalytische Reaktion lässt sich erstmals unter realistischen Temperatur- und Druckbedingungen verfolgen, beginnend bei den elektronischen Bindungen über die atomaren Prozesse bis hin zur mesoskopischen Beschreibung der letztlich messbaren katalytischen Aktivität. Forscher des Berliner Fritz-Haber-Instituts der Max-Planck-Gesellschaft sowie des FOM-Instituts AMOLF in Amsterdam/Niederlande haben dazu die Theorien und Computerprogramme entwickelt. Mit Hilfe eines Hochleistungsrechners am Rechenzentrum Garching der Max-Planck-Gesellschaft (RZG) konnten sie an einem Modellkatalysator erstmals die gesamte chemische Reaktion simulieren und die Ergebnisse visuell darstellen. Überraschend war dabei, wie stark die atomaren Prozesse auf der Oberfläche voneinander abhängen, was von ausschlaggebender Bedeutung für die daraus resultierende Wirkung des Katalysators ist (Physical Review Letters, 10. September 2004).


Katalysatoren sind von herausragender Bedeutung für viele technische Prozesse in der chemischen Industrie und der Abgasreinigung. Dennoch kennt man ihre Wirkungsweise noch nicht bis ins Detail. Das liegt vor allem daran, dass experimentelle Untersuchungen auf atomarer Ebene unter realen Temperatur- und Druckbedingungen bei der Katalyse nicht möglich sind, sondern bestenfalls unter den künstlichen Bedingungen des Ultrahochvakuums.


Ein Katalysator ist ein Zusatzstoff, der eine chemische Reaktion beschleunigt, ohne selbst dabei verbraucht zu werden. Was aber an seiner Oberfläche im Detail vor sich geht, also wie es letztendlich zu der erwünschten chemischen Reaktion kommt, war bislang weitgehend unbekannt. Um die Oberflächenreaktionen zu verstehen, ist daher zunächst eine genaue Kenntnis der einzelnen atomaren Prozesse notwendig. Die erwirbt man neben experimentellen Untersuchungen mit quantenmechanischen Rechenverfahren wie der Dichtefunktionaltheorie (Walter Kohn erhielt dafür 1998 den Nobelpreis für Chemie).

Doch trotz des Einsatzes von Hochleistungsrechnern kann man die relevanten molekularen Prozesse nur über extrem kurze Zeiträume von weniger als einer Hundertmillionstel Sekunde verfolgen. Das reicht bei weitem nicht aus, um einen - wie sich jetzt herausstellte - wesentlichen Aspekt - der Katalysatorwirkung zu simulieren, nämlich das kollektiv-chaotische Zusammenspiel der vielen verschiedenen Prozesse. Die Herausforderung bestand darin, die Rechenverfahren, die sich bei der Untersuchung einzelner molekularer Prozesse als zuverlässig erwiesen haben, mit statistischen Methoden zu verbinden. Letztere sind weniger genau, machen es aber möglich, größere Oberflächenbereiche und Zeiträume bis in den Sekundenbereich zu überblicken.

Die Wissenschaftler am Fritz-Haber-Institut haben diese Verknüpfung der Methoden auf die Oxidation von Kohlenmonoxid, eine der Hauptreaktionen in Autoabgaskatalysatoren, auf einer Rutheniumoberfläche angewandt. Ihnen gelang eine statistische Simulation der verschiedenen atomaren Prozesse über Zeiträume von Pikosekunden (ein Millionstel einer Millionstel Sekunde) bis Sekunden, also über 12 Größenordnungen. Als Grundlage diente eine genaue dichtefunktionaltheoretische Beschreibung der Bildung und des Aufbrechens der unterschiedlichen chemischen Bindungen.

Hierbei kamen die Forscher zu einem überraschenden Befund: Der aus Experimenten bekannte hohe Wirkungsgrad des Modellkatalysators ließ sich nur dann theoretisch wiederholen, wenn das enge Zusammenspiel der Elementarprozesse zu einer bestimmten Zusammensetzung der Atome auf der Oberfläche führte (vgl. Abb.), die sich entscheidend von experimentellen Befunden unter Ultrahochvakuumsbedingungen bzw. von früheren theoretischen Ergebnissen, die das Wechselspiel der Prozesse nicht berücksichtigten, unterscheidet.

Die jetzt erstmals gelungene explizite Behandlung des Zusammenspiels aller Prozesse stellt somit einen entscheidenden Aspekt in der theoretischen Modellierung dar. Denn, wie sich herausstellte, kann nur in der nun gefundenen speziellen Konstellation der Atome ein bestimmter Reaktionsprozess ablaufen, der für sich allein, also ohne das Zusammenspiel aller Prozesse, gar nicht bedeutsam erscheint und keineswegs einen optimalen katalytischen Effekt hätte. Der errechnete hohe Wirkungsgrad des Katalysators stimmt bemerkenswert gut mit den experimentell gewonnenen Daten überein.

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Katalysator Modellkatalysator Temperatur- Wirkungsgrad

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie