Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vielseitige Kristalle

17.09.2004


Doppel-Wolframate machen Laser effizienter. Das Projekt DT- CRYS erforscht den seltenen Werkstoff

... mehr zu:
»Doppel-Wolframate »FVB »Laser »Laserlicht »MBI »Optik

Das Stückchen Kristall ist durchsichtig, etwa so groß wie ein Daumennagel. Man könnte es für Glas halten. Oder für einen großen Diamanten. Wertvoll und selten ist es ja, doch seinen Wert machen vor allem seine Anwendungsmöglichkeiten in der Lasertechnik und der Optoelektronik aus. Es handelt sich um einen Doppel-Wolframat- Kristall mit einer ganz speziellen Gitterstruktur; er ist monoklinisch.

Doppel-Wolframat-Kristalle werden im Labor hergestellt („gezüchtet“). Die Kristalle können auch gezielt verunreinigt werden, man spricht von Dotieren. Dann ändert sich nicht nur die Farbe, sondern es ergeben sich auch neue Eigenschaften. Fügt man etwa Ytterbium hinzu, eignen sich die Kristalle als aktives Medium in Festkörperlasern. Sie können aber auch zur Frequenzverschiebung genutzt werden, um beispielsweise aus einem grünen Laserstrahl einen roten zu erzeugen. Das von der EU geförderte Projekt DT- CRYS untersucht in den kommenden drei Jahren systematisch die Herstellung, die Eigenschaften und die Anwendungsmöglichkeiten der monoklinischen Doppel-Wolframate. Koordinator ist Dr. Valentin Petrov vom Max-Born-Institut.


„Was uns reizt, ist die Multifunktionalität des Materials“, erläutert Petrov. Allein die nichtlinearen optischen Eigenschaften sowie die Eignung als Lasermedium seien zwei grundverschiedene Dinge, deren Untersuchung sich jeweils lohne. Das Problem dabei ist nur, dass Doppel-Wolframat-Kristalle weltweit sehr schwer verfügbar sind. In Novosibirsk wurden die Doppel-Wolframate vor rund 35 Jahren erstmals aus einer Lösung gezüchtet. Schon damals ging es um Anwendungen in der Lasertechnik, doch die Kristalle setzten sich nicht für kommerzielle Laser durch. Stattdessen befinden sich in den meisten Festkörperlasern von heute Elemente aus Yttrium- Aluminium-Granat, dotiert mit Neodymium. Im Fachjargon heißen diese Lichtquellen Neodym- YAG-Laser (oft auch geschrieben als Nd:YAG). Die 1064-Nanometer-Wellenlänge des Nd:YAG-Lasers ist so etwas wie Standard für die Charakterisierung optischer Materialien geworden. „Einfach weil die Lichtquellen sehr verlässlich mit dieser Wellenlänge strahlen“, wie Petrov sagt. Damit vergleicht man normalerweise alle anderen Festkörperlaser.

Höherer Wirkungsgrad

In den neunziger Jahren des vergangenen Jahrhunderts hat man dann die Doppel-Wolframate wiederentdeckt. „Sie sind besser als die YAG-Elemente“, sagt Petrov, „sie haben eine niedrigere Pumpschwelle“. Das heißt, man muss weniger Energie hineinstecken, um Laserlicht zu erzeugen. Überdies ist der Wirkungsgrad höher. Ein Ziel der Forschungen sei es, Neodym-YAG durch Ytterbium und Doppel-Wolframate zu ersetzen.

Ebenfalls interessant sind die nichtlinearen optischen Eigenschaften. So sind Doppel- Wolframate „Raman-aktiv“. Der Begriff geht auf den indischen Physiker Chandrasekhara Raman (1888 – 1970) zurück. Er erkannte, dass einfarbiges („monochromatisches“) Licht, das an Materie gestreut wird, unterschiedliche Spektrallinien aufweist. Neben der Linie des eingestrahlten Lichts sind auch schwächere Linien zu erkennen, die auf die bestrahlte Materie hinweisen. Laserlicht stimuliert diesen Effekt und verstärkt ihn. Strahlt nun ein Laser auf Doppel-Wolframate, so wird die Wellenlänge des Strahls verändert, und zwar in Richtung langwelliges Spektrum. Doppel- Wolframate eignen sich auch zur optischen Kühlung. „Hitze ist ein limitierender Faktor in der Lasertechnologie“, sagt Petrov. „Über Fluoreszenz kann Wärme abgeführt werden.“ Wenn ein Laserelement also fluoresziert – wie es Doppel-Wolframate tun –, kann dies seine Erhitzung bis zu einem gewissen Grad kompensieren. Petrov: „Wir experimentieren am MBI auch mit optischer Kühlung.“

Attraktive Bedingungen

Das MBI ist Konsortialführer des Projekts DTCRYS. Zugleich ist das MBI federführend in einem der drei Arbeitsbereiche des Projekts, dem Bereich Anwendung. Die beiden anderen „Workpackages“ betreffen zum einen die Herstellung und Charakterisierung der Kristalle, zum anderen die Strukturierung der Materialien, etwa die Erzeugung hauchdünner Schichten durch spezielle Verfahren wie Epitaxie. Die Züchtung und Charakterisierung wird koordiniert von der Universität in Tarragona (Universitat Rovira I Virgili; Spanien), die Strukturierung liegt in der Federführung der École Polytechnique Fédérale de Lausanne (Schweiz). Hinzu kommen sechs weitere Partner, drei davon kleine oder mittelständische Unternehmen.

Petrov: „Besonders attraktiv an dem Projekt ist die Flexibilität der eingesetzten Mittel.“ Anders als bei bisherigen EU-Förderungen sei es möglich, Gelder kurzfristig umzuschichten, wenn sich Sackgassen ergeben sollten oder besonders interessante neue Wege auftun. Über die Ziele sagt Petrov: „Auch wenn wir mit Firmen kooperieren, geht es bei DT-CRYS nicht in erster Linie um Produktentwicklung.“ Das Projekt sei vielmehr auf grundlegende Erkenntnisse ausgerichtet. Letzten Endes verspreche sich die EU davon aber doch einen Vorteil für europäische Unternehmen.

Weitere Informationen: Dr. Valentin Petrov Tel.: (030) 63 92 – 1272 E-Mail: petrov@mbi-berlin.de Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Max-Born-Str. 2 A, 12489 Berlin

Das Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie betreibt Grundlagenforschung auf dem Gebiet der nichtlinearen Optik und Kurzzeitdynamik bei Wechselwirkung von Materie mit Laserlicht und verfolgt daraus resultierende Anwendungsaspekte. Schwerpunkte des Forschungsprogramms sind die Realisierung neuer Quellen für ultrakurze und ultraintensive Lichtimpulse und deren Einsatz in Physik, chemischer Physik und Materialforschung. Das MBI ist in zahlreiche nationale und internationale Kooperationen eingebunden und wird von der Europäischen Union als Large Scale Laser Facility gefördert. Es ist Teil des Forschungsverbundes Berlin e.V. (FVB).

Im Forschungsverbund Berlin (FVB) sind acht natur-, umwelt- und lebenswissenschaftlich orientierte Institute zusammengeschlossen, die wissenschaftlich eigenständig sind, aber im Rahmen einer einheitlichen Rechtspersönlichkeit gemeinsame Interessen wahrnehmen. Alle Institute des FVB gehören zur Leibniz- Gemeinschaft.

Josef Zens |
Weitere Informationen:
http://www.dt-crys.net
http://www.mbi-berlin.de
http://www.fv-berlin.de

Weitere Berichte zu: Doppel-Wolframate FVB Laser Laserlicht MBI Optik

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Studie für Patienten mit Prostatakrebs: Einteilung in genomische Gruppen soll Therapie präzisieren

21.08.2017 | Interdisziplinäre Forschung

Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit

21.08.2017 | Physik Astronomie

Ein neuer Indikator für marine Ökosystem-Veränderungen - der Dia/Dino-Index

21.08.2017 | Ökologie Umwelt- Naturschutz