Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vielseitige Kristalle

17.09.2004


Doppel-Wolframate machen Laser effizienter. Das Projekt DT- CRYS erforscht den seltenen Werkstoff

... mehr zu:
»Doppel-Wolframate »FVB »Laser »Laserlicht »MBI »Optik

Das Stückchen Kristall ist durchsichtig, etwa so groß wie ein Daumennagel. Man könnte es für Glas halten. Oder für einen großen Diamanten. Wertvoll und selten ist es ja, doch seinen Wert machen vor allem seine Anwendungsmöglichkeiten in der Lasertechnik und der Optoelektronik aus. Es handelt sich um einen Doppel-Wolframat- Kristall mit einer ganz speziellen Gitterstruktur; er ist monoklinisch.

Doppel-Wolframat-Kristalle werden im Labor hergestellt („gezüchtet“). Die Kristalle können auch gezielt verunreinigt werden, man spricht von Dotieren. Dann ändert sich nicht nur die Farbe, sondern es ergeben sich auch neue Eigenschaften. Fügt man etwa Ytterbium hinzu, eignen sich die Kristalle als aktives Medium in Festkörperlasern. Sie können aber auch zur Frequenzverschiebung genutzt werden, um beispielsweise aus einem grünen Laserstrahl einen roten zu erzeugen. Das von der EU geförderte Projekt DT- CRYS untersucht in den kommenden drei Jahren systematisch die Herstellung, die Eigenschaften und die Anwendungsmöglichkeiten der monoklinischen Doppel-Wolframate. Koordinator ist Dr. Valentin Petrov vom Max-Born-Institut.


„Was uns reizt, ist die Multifunktionalität des Materials“, erläutert Petrov. Allein die nichtlinearen optischen Eigenschaften sowie die Eignung als Lasermedium seien zwei grundverschiedene Dinge, deren Untersuchung sich jeweils lohne. Das Problem dabei ist nur, dass Doppel-Wolframat-Kristalle weltweit sehr schwer verfügbar sind. In Novosibirsk wurden die Doppel-Wolframate vor rund 35 Jahren erstmals aus einer Lösung gezüchtet. Schon damals ging es um Anwendungen in der Lasertechnik, doch die Kristalle setzten sich nicht für kommerzielle Laser durch. Stattdessen befinden sich in den meisten Festkörperlasern von heute Elemente aus Yttrium- Aluminium-Granat, dotiert mit Neodymium. Im Fachjargon heißen diese Lichtquellen Neodym- YAG-Laser (oft auch geschrieben als Nd:YAG). Die 1064-Nanometer-Wellenlänge des Nd:YAG-Lasers ist so etwas wie Standard für die Charakterisierung optischer Materialien geworden. „Einfach weil die Lichtquellen sehr verlässlich mit dieser Wellenlänge strahlen“, wie Petrov sagt. Damit vergleicht man normalerweise alle anderen Festkörperlaser.

Höherer Wirkungsgrad

In den neunziger Jahren des vergangenen Jahrhunderts hat man dann die Doppel-Wolframate wiederentdeckt. „Sie sind besser als die YAG-Elemente“, sagt Petrov, „sie haben eine niedrigere Pumpschwelle“. Das heißt, man muss weniger Energie hineinstecken, um Laserlicht zu erzeugen. Überdies ist der Wirkungsgrad höher. Ein Ziel der Forschungen sei es, Neodym-YAG durch Ytterbium und Doppel-Wolframate zu ersetzen.

Ebenfalls interessant sind die nichtlinearen optischen Eigenschaften. So sind Doppel- Wolframate „Raman-aktiv“. Der Begriff geht auf den indischen Physiker Chandrasekhara Raman (1888 – 1970) zurück. Er erkannte, dass einfarbiges („monochromatisches“) Licht, das an Materie gestreut wird, unterschiedliche Spektrallinien aufweist. Neben der Linie des eingestrahlten Lichts sind auch schwächere Linien zu erkennen, die auf die bestrahlte Materie hinweisen. Laserlicht stimuliert diesen Effekt und verstärkt ihn. Strahlt nun ein Laser auf Doppel-Wolframate, so wird die Wellenlänge des Strahls verändert, und zwar in Richtung langwelliges Spektrum. Doppel- Wolframate eignen sich auch zur optischen Kühlung. „Hitze ist ein limitierender Faktor in der Lasertechnologie“, sagt Petrov. „Über Fluoreszenz kann Wärme abgeführt werden.“ Wenn ein Laserelement also fluoresziert – wie es Doppel-Wolframate tun –, kann dies seine Erhitzung bis zu einem gewissen Grad kompensieren. Petrov: „Wir experimentieren am MBI auch mit optischer Kühlung.“

Attraktive Bedingungen

Das MBI ist Konsortialführer des Projekts DTCRYS. Zugleich ist das MBI federführend in einem der drei Arbeitsbereiche des Projekts, dem Bereich Anwendung. Die beiden anderen „Workpackages“ betreffen zum einen die Herstellung und Charakterisierung der Kristalle, zum anderen die Strukturierung der Materialien, etwa die Erzeugung hauchdünner Schichten durch spezielle Verfahren wie Epitaxie. Die Züchtung und Charakterisierung wird koordiniert von der Universität in Tarragona (Universitat Rovira I Virgili; Spanien), die Strukturierung liegt in der Federführung der École Polytechnique Fédérale de Lausanne (Schweiz). Hinzu kommen sechs weitere Partner, drei davon kleine oder mittelständische Unternehmen.

Petrov: „Besonders attraktiv an dem Projekt ist die Flexibilität der eingesetzten Mittel.“ Anders als bei bisherigen EU-Förderungen sei es möglich, Gelder kurzfristig umzuschichten, wenn sich Sackgassen ergeben sollten oder besonders interessante neue Wege auftun. Über die Ziele sagt Petrov: „Auch wenn wir mit Firmen kooperieren, geht es bei DT-CRYS nicht in erster Linie um Produktentwicklung.“ Das Projekt sei vielmehr auf grundlegende Erkenntnisse ausgerichtet. Letzten Endes verspreche sich die EU davon aber doch einen Vorteil für europäische Unternehmen.

Weitere Informationen: Dr. Valentin Petrov Tel.: (030) 63 92 – 1272 E-Mail: petrov@mbi-berlin.de Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Max-Born-Str. 2 A, 12489 Berlin

Das Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie betreibt Grundlagenforschung auf dem Gebiet der nichtlinearen Optik und Kurzzeitdynamik bei Wechselwirkung von Materie mit Laserlicht und verfolgt daraus resultierende Anwendungsaspekte. Schwerpunkte des Forschungsprogramms sind die Realisierung neuer Quellen für ultrakurze und ultraintensive Lichtimpulse und deren Einsatz in Physik, chemischer Physik und Materialforschung. Das MBI ist in zahlreiche nationale und internationale Kooperationen eingebunden und wird von der Europäischen Union als Large Scale Laser Facility gefördert. Es ist Teil des Forschungsverbundes Berlin e.V. (FVB).

Im Forschungsverbund Berlin (FVB) sind acht natur-, umwelt- und lebenswissenschaftlich orientierte Institute zusammengeschlossen, die wissenschaftlich eigenständig sind, aber im Rahmen einer einheitlichen Rechtspersönlichkeit gemeinsame Interessen wahrnehmen. Alle Institute des FVB gehören zur Leibniz- Gemeinschaft.

Josef Zens |
Weitere Informationen:
http://www.dt-crys.net
http://www.mbi-berlin.de
http://www.fv-berlin.de

Weitere Berichte zu: Doppel-Wolframate FVB Laser Laserlicht MBI Optik

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Biotinte für den Druck gewebeähnlicher Strukturen
19.10.2017 | Forschungszentrum Jülich, Jülich Centre for Neutron Science

nachricht Was winzige Strukturen über Materialeigenschaften verraten
19.10.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise