Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Lochfraß bei Edelstahl auf der Spur

25.08.2004


Explosionsartige Vermehrung winziger "Rostlöcher" ist Ursache massiver Korrosionsschäden, berichten Forscher des Berliner Fritz-Haber-Instituts


Drei aufeinanderfolgende "Schnappschüsse" veranschaulichen die Ausbreitung eines Korrosionsschadens in der schützenden Oxidschicht eines rostfreien Stahls. Bild: Fritz-Haber-Institut



Rostfreier Stahl kann sehr schnell korrodieren, wenn sich das anliegende Potential, die Konzentration korrodierender Lösungen oder die Temperatur nur leicht verändern. Wissenschaftler des Fritz-Haber-Instituts der Max-Planck-Gesellschaft und der Universität Virginia, USA, haben jetzt unter Einsatz spezieller Mikroskopie-Techniken herausgefunden, dass das schlagartige Einsetzen der Korrosion darauf beruht, dass sich die Zahl winziger metastabiler Löcher in der betroffenen Metalloberfläche explosionsartig vermehrt. Dieser Befund deckt sich mit theoretischen Modellen, wonach sich das Phänomen des Lochfraßes unter entsprechenden Bedingungen autokatalytisch wie eine Kettenreaktion ausbreitet. Die in der jüngsten Ausgabe von "Science" veröffentlichten Forschungsergebnisse tragen entscheidend dazu bei, Korrosionsprozesse besser verstehen, kontrollieren und letztendlich vermeiden zu können (Science, 20. August 2004).



Rostfreie Stähle, die eigentlich korrosionsresistent sein sollten, können lokalem Lochfraß zum Opfer fallen, was häufig ganze Bauteile versagen lässt. Allein in den USA belaufen sich die jährlichen Verluste durch Korrosion auf etwa drei Prozent des Bruttosozialprodukts. Etwa ein Drittel der Ausfälle chemischer Anlagen sind auf lokale Korrosion zurückzuführen.

Vor dem eigentlichen Lochfraß bilden sich in der schützenden Oxidhaut der Stähle winzige, metastabile Löcher von wenigen Mikrometern Durchmesser, so genannte Pits. Jeder Pit erzeugt während seines Entstehens einen sekundenlangen kleinen Strompuls, der die chemische Reaktion anzeigt. Die Lochfraßkorrosion setzt plötzlich ein. Bei geringsten Veränderungen der äußeren Bedingungen kann die Korrosionsrate extrem ansteigen.

Obwohl die Prozesse, die zum Auftreten einzelner Pits führen, bereits relativ gut erforscht sind, war das plötzliche Auftreten von Lochfraß bislang ungeklärt. Wissenschaftler des Fritz-Haber-Instituts in Zusammenarbeit mit einem Team von der Universität Virginia haben deshalb neue mikroskopische Methoden entwickelt, um den Beginn des Lochfraßes in Echtzeit beobachten zu können. Eine dieser Methoden, die Ellipsomikroskopie zur Abbildung von Oberflächen (Ellipsomicroscopy for Surface Imaging), macht die sich ausbreitenden Schädigungen der Oxidschicht sichtbar.

Daneben verfolgten die Forscher unter einem hochauflösenden und kontrastverstärkten optischen Mikroskop die Entstehung einzelner Pits und ihr kollektives Verhalten. Sie fanden heraus, dass das plötzliche Auftreten von Lochfraßkorrosion auf eine explosionsartige Vermehrung der Pits zurückzuführen ist. Die Forscher haben diesen Prozess auch im Computer simuliert: Dabei gingen sie von der Annahme aus, dass sich ein neuer Pit mit hoher Wahrscheinlichkeit in der unmittelbaren Umgebung bereits vorhandener Pits bildet. Danach ist das plötzliche Auftreten von Lochfraßkorrosion vergleichbar mit der Ausbreitung ansteckender Krankheiten oder einer Kettenreaktion.

Diese Schädigung der Stahloberflächen lässt sich durch Veränderung der die Korrosion verursachenden Lösung (durch die Zugabe von Inhibitoren) oder durch die Optimierung der Stahllegierung verhindern. Die von den Forschern entwickelten Mikroskopie-Techniken lassen sich für die Visualisierung verschiedenster Korrosionserscheinungen bei Metallen einsetzen.

Originalveröffentlichung:

C. Punckt, M. Bölscher, H. H. Rotermund, A. S. Mikhailov, L. Organ, N. Budiansky, J. R. Scully, and J. L. Hudson
Sudden Onset of Pitting Corrosion on Stainless Steel as a Critical Phenomenon
Science, 20 August 2004

Weitere Informationen erhalten Sie von:

Prof. Dr. A. S. Mikhailov
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
Tel.: 030 8413-5122
E-Mail: mikhailov@fhi-berlin.mpg.de

Prof. Dr. H. H. Rotermund
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
Tel.: 030 8413-5129
E-Mail: rotermun@fhi-berlin.mpg.de

Prof. Dr. A. S. Mikhailov | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.fhi-berlin.mpg.de

Weitere Berichte zu: Korrosion Lochfraß Lochfraßkorrosion PIT

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops