Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichthärtende Klebstoffe im Brennpunkt der Entwickler

04.08.2004


Die Teile von Kleinlautsprechern (z. B. für Handys) werden heute fast ausschließlich mit lichthärtenden Acrylaten wie DELO-PHOTOBOND geklebt.


Die Abbildungen zeigen die Verfärbung nach 1000h in einem Sonnenlicht-Simulator, der eine Belastung von 1000 h Tageslicht in Äquatornähe bzw. 5000 h in Mitteleuropa simuliert. Hier zeigt sich gegenüber bisherigen Standards (unten) eine deutliche Verbesserung bei den DELO-GLASBOND-Verklebungen (oben)


Lichthärtende Klebstoffe sind inzwischen unverzichtbar für industrielle Prozesse geworden, gleichgültig ob es sich um Klebstoffe auf Basis von Acrylaten oder Epoxidharzen handelt. Obwohl oder vielmehr, weil diese Klebstoffe inzwischen viele Anwendungsbereiche erobert haben, steht auch die Forschung und Entwicklung auf diesem Gebiet nie still: neue Rohstoffe, veränderte Anforderungen der Kunden oder neue Technologien erfordern eine ständige Weiterentwicklung.


Zwischen den Anfängen in den 50er Jahren, als lichthärtende Klebstoffe hauptsächlich in der Möbelindustrie eingesetzt wurden, über den ersten Aufschwung im Druckfarbenbereich in den 70er Jahren bis zum heutigen High-Tech-Einsatz in der Mikroelektronik liegt eine rasante Entwicklung, die noch nicht zu Ende ist. Denn Epoxidharze und Acrylate, die bei der Bestrahlung mit UVA-Licht oder Licht im sichtbaren Wellenlängenbereich aushärten, sind für viele Anwendungen unverzichtbar geworden.

Die Vorteile der lichthärtenden Klebstoffe liegen auf der Hand:


  • Einfache Verarbeitung è für hoch automatisierte Prozesse
  • Sekundenschnelle Aushärtung ohne Temperaturzufuhr è für schnelle Inline-Produktion
  • „Curing on demand“, d. h. der Klebstoff härtet erst nach Bestrahlung mit Licht der notwendigen Wellenlänge aus è einfache Integration in Fertigungslinien
  • Frei von Lösungsmitteln è umweltverträglich und gesundheitsschonend
  • Harte wie auch sehr flexible Klebstoff-Varianten è maßgeschneidert für die Anwendung

Neben den bekannten Anwendungen sind noch viele weitere möglich. Drei zentrale Entwicklungsrichtungen sollen im Folgenden kurz vorgestellt werden, die eindrucksvoll demonstrieren, wie Eigenschaften, die vor wenigen Jahren noch als unmöglich erachtet wurden, heute realisiert werden können.

Glasklebstoffe – feuchtigkeitsbeständig und dauerhaft transparent

Glasklebstoffe sind schon seit geraumer Zeit eine Domäne von lichthärtenden Acrylatklebstoffen. Typische Anwendungsbeispiele sind Glastrennwände für Bürogebäude oder Glasverklebungen zu Designzwecken. Neuerdings werden Glasklebstoffe für strukturelle Verklebungen verwendet, beispielsweise für das Verkleben von Fassadenteilen aus Glas bei modernen Gebäuden. Hauptanforderungen bei allen Glasverklebungen sind neben der guten Haftung auf Glas und trockenen Klebstoffoberflächen vor allem die Beständigkeit der Verklebung und die Lichtstabilität.

Während die anfängliche Haftung auf Glas nie eine besondere Herausforderung dargestellt hat, konnte erst durch den Einsatz neuer Rohstoffe die Feuchtigkeitsbeständigkeit deutlich verbessert werden. Maßstab für die Feuchtigkeitsbeständigkeit ist der Pressure-Cooker-Test, bei dem die Verklebung 16 h bei 100 °C einer relativen Luftfeuchtigkeit von 100 % ausgesetzt wird.

Klebstoffe für die Optoelektronik

In der Optoelektronik ist zusätzlich zu den Anforderungen für Glasklebstoffe eine höhere Temperaturstabilität notwendig. Aus diesem Grund werden hier bisher vor allem Epoxidharzklebstoffe oder Silikone eingesetzt – zweikomponentige oder warmhärtende Klebstoffen mit sehr langen Aushärtezeiten von mindestens mehreren Minuten. Beim Verguss von Leuchtdioden werden heute jedoch sehr hohe Stückzahlen angestrebt, so dass die Aushärtung der Vergussmasse innerhalb weniger Sekunden erfolgen muss. So kann auch hier die Lichthärtung ihren größten Vorteil, die Geschwindigkeit, ausspielen.

Die Stabilisierung sowohl gegen Licht als auch Wärmebelastung von strahlungshärtenden Klebstoffen ist eine besondere Herausforderung, da die konventionell verwendeten Stabilisatoren die Strahlungshärtung beeinträchtigen oder gar verhindern. Eine Kombination mehrerer UV- und Thermostabilisatoren ermöglichte es den Entwicklern bei DELO Industrie Klebstoffe, diese Herausforderung zu meistern. Die Abbildung zeigt die Wärme- und UV-Stabilität im Vergleich zu handelsüblichen Produkten. Messwert ist der Grad der Vergilbung, der so genannte b-Wert, gemessen an einem Farbmessgerät.

Schwarze Chipvergussmassen

UV-härtende Vergussmassen sind in der Chipkartenindustrie Stand der Technik. Verwendet man keine speziellen Verfahren, wie z. B. die Voraktivierung von kationisch polymerisierenden Produkten an, so ist für die Nutzung der Strahlungshärtung die vollständige Durchstrahlung des Klebstoffvolumens, also ein weitgehend transparenter Klebstoff Voraussetzung für die Aushärtung.

Ein verstärktes Sicherheitsdenken hat dazu geführt, dass man die Chips und damit die Daten mehr und mehr vor unbefugten Blicken und Kopieren schützen möchte – mit einer absolut blickdichten Vergussmasse. Bisher konnte ein echt schwarzer Chipverguss nur mit warmhärtenden Produkten realisiert werden. Durch die Entwicklung eines zweiten, patentierten Härtungsmechanismus für kationische Systeme entstand in den Laboratorien von DELO eine schwarze Vergussmasse, die durch eine Kombinationshärtung von Licht und Wärme die Vorteile der Lichthärtung weiterhin nutzbar macht – also schnelle Prozesse für hohe Stückzahlen – und gleichzeitig den hohen Sicherheitsanforderungen Rechnung trägt. Sie wird bei führenden Chipmodulherstellern bereits eingesetzt.

Zusammenfassung

Diese Entwicklungsrichtungen zeigen deutlich, dass in lichthärtenden Klebstoffen noch große Potenziale zur Weiterentwicklung stecken. Selbst bei den lichthärtenden Acrylaten, die inzwischen schon seit mehreren Jahrzehnten in Einsatz sind, finden sich immer wieder Möglichkeiten zur Optimierung. Und die strahlungshärtenden Epoxidklebstoffe sind mit einem Alter von ca. 15 Jahren noch weit von dem Zenit ihrer technischen Möglichkeiten entfernt. Es gibt außer den genannten noch weitere, sehr viel versprechende Entwicklungsansätze in den Labors der Klebstoffhersteller. Beispiele sind lichthärtende Klebstoffe mit hoher Temperaturstabilität oder neue Methoden zur Sensibilisierung von Photoinitiatoren, um größere Wellenlängenbereiche für die Aushärtung nutzbar zu machen. Aber nicht nur an den Klebstoffen selbst wird geforscht und entwickelt, auch bei den Aushärtelampen stehen neue Innovationen vor der Marktreife. Besonders die Leuchtdioden-Technologie hat in den letzten Jahren große Fortschritte gemacht und zwar sowohl hinsichtlich der emittierten Wellenlängen, der Intensität des ausgestrahlten Lichtes sowie der Lebensdauer. Die ersten wirklich leistungsfähigen Aushärtelampen mit Leuchtdioden statt konventionellen Quecksilberdampflampen werden in absehbarer Zeit auf dem Markt erscheinen.

Dr. Michael Stumbeck | DELO Industrie Klebstoffe
Weitere Informationen:
http://www.delo.de

Weitere Berichte zu: Aushärtung Klebstoff Temperaturstabilität Vergussmasse Verklebung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie