Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lichthärtende Klebstoffe im Brennpunkt der Entwickler

04.08.2004


Die Teile von Kleinlautsprechern (z. B. für Handys) werden heute fast ausschließlich mit lichthärtenden Acrylaten wie DELO-PHOTOBOND geklebt.


Die Abbildungen zeigen die Verfärbung nach 1000h in einem Sonnenlicht-Simulator, der eine Belastung von 1000 h Tageslicht in Äquatornähe bzw. 5000 h in Mitteleuropa simuliert. Hier zeigt sich gegenüber bisherigen Standards (unten) eine deutliche Verbesserung bei den DELO-GLASBOND-Verklebungen (oben)


Lichthärtende Klebstoffe sind inzwischen unverzichtbar für industrielle Prozesse geworden, gleichgültig ob es sich um Klebstoffe auf Basis von Acrylaten oder Epoxidharzen handelt. Obwohl oder vielmehr, weil diese Klebstoffe inzwischen viele Anwendungsbereiche erobert haben, steht auch die Forschung und Entwicklung auf diesem Gebiet nie still: neue Rohstoffe, veränderte Anforderungen der Kunden oder neue Technologien erfordern eine ständige Weiterentwicklung.


Zwischen den Anfängen in den 50er Jahren, als lichthärtende Klebstoffe hauptsächlich in der Möbelindustrie eingesetzt wurden, über den ersten Aufschwung im Druckfarbenbereich in den 70er Jahren bis zum heutigen High-Tech-Einsatz in der Mikroelektronik liegt eine rasante Entwicklung, die noch nicht zu Ende ist. Denn Epoxidharze und Acrylate, die bei der Bestrahlung mit UVA-Licht oder Licht im sichtbaren Wellenlängenbereich aushärten, sind für viele Anwendungen unverzichtbar geworden.

Die Vorteile der lichthärtenden Klebstoffe liegen auf der Hand:


  • Einfache Verarbeitung è für hoch automatisierte Prozesse
  • Sekundenschnelle Aushärtung ohne Temperaturzufuhr è für schnelle Inline-Produktion
  • „Curing on demand“, d. h. der Klebstoff härtet erst nach Bestrahlung mit Licht der notwendigen Wellenlänge aus è einfache Integration in Fertigungslinien
  • Frei von Lösungsmitteln è umweltverträglich und gesundheitsschonend
  • Harte wie auch sehr flexible Klebstoff-Varianten è maßgeschneidert für die Anwendung

Neben den bekannten Anwendungen sind noch viele weitere möglich. Drei zentrale Entwicklungsrichtungen sollen im Folgenden kurz vorgestellt werden, die eindrucksvoll demonstrieren, wie Eigenschaften, die vor wenigen Jahren noch als unmöglich erachtet wurden, heute realisiert werden können.

Glasklebstoffe – feuchtigkeitsbeständig und dauerhaft transparent

Glasklebstoffe sind schon seit geraumer Zeit eine Domäne von lichthärtenden Acrylatklebstoffen. Typische Anwendungsbeispiele sind Glastrennwände für Bürogebäude oder Glasverklebungen zu Designzwecken. Neuerdings werden Glasklebstoffe für strukturelle Verklebungen verwendet, beispielsweise für das Verkleben von Fassadenteilen aus Glas bei modernen Gebäuden. Hauptanforderungen bei allen Glasverklebungen sind neben der guten Haftung auf Glas und trockenen Klebstoffoberflächen vor allem die Beständigkeit der Verklebung und die Lichtstabilität.

Während die anfängliche Haftung auf Glas nie eine besondere Herausforderung dargestellt hat, konnte erst durch den Einsatz neuer Rohstoffe die Feuchtigkeitsbeständigkeit deutlich verbessert werden. Maßstab für die Feuchtigkeitsbeständigkeit ist der Pressure-Cooker-Test, bei dem die Verklebung 16 h bei 100 °C einer relativen Luftfeuchtigkeit von 100 % ausgesetzt wird.

Klebstoffe für die Optoelektronik

In der Optoelektronik ist zusätzlich zu den Anforderungen für Glasklebstoffe eine höhere Temperaturstabilität notwendig. Aus diesem Grund werden hier bisher vor allem Epoxidharzklebstoffe oder Silikone eingesetzt – zweikomponentige oder warmhärtende Klebstoffen mit sehr langen Aushärtezeiten von mindestens mehreren Minuten. Beim Verguss von Leuchtdioden werden heute jedoch sehr hohe Stückzahlen angestrebt, so dass die Aushärtung der Vergussmasse innerhalb weniger Sekunden erfolgen muss. So kann auch hier die Lichthärtung ihren größten Vorteil, die Geschwindigkeit, ausspielen.

Die Stabilisierung sowohl gegen Licht als auch Wärmebelastung von strahlungshärtenden Klebstoffen ist eine besondere Herausforderung, da die konventionell verwendeten Stabilisatoren die Strahlungshärtung beeinträchtigen oder gar verhindern. Eine Kombination mehrerer UV- und Thermostabilisatoren ermöglichte es den Entwicklern bei DELO Industrie Klebstoffe, diese Herausforderung zu meistern. Die Abbildung zeigt die Wärme- und UV-Stabilität im Vergleich zu handelsüblichen Produkten. Messwert ist der Grad der Vergilbung, der so genannte b-Wert, gemessen an einem Farbmessgerät.

Schwarze Chipvergussmassen

UV-härtende Vergussmassen sind in der Chipkartenindustrie Stand der Technik. Verwendet man keine speziellen Verfahren, wie z. B. die Voraktivierung von kationisch polymerisierenden Produkten an, so ist für die Nutzung der Strahlungshärtung die vollständige Durchstrahlung des Klebstoffvolumens, also ein weitgehend transparenter Klebstoff Voraussetzung für die Aushärtung.

Ein verstärktes Sicherheitsdenken hat dazu geführt, dass man die Chips und damit die Daten mehr und mehr vor unbefugten Blicken und Kopieren schützen möchte – mit einer absolut blickdichten Vergussmasse. Bisher konnte ein echt schwarzer Chipverguss nur mit warmhärtenden Produkten realisiert werden. Durch die Entwicklung eines zweiten, patentierten Härtungsmechanismus für kationische Systeme entstand in den Laboratorien von DELO eine schwarze Vergussmasse, die durch eine Kombinationshärtung von Licht und Wärme die Vorteile der Lichthärtung weiterhin nutzbar macht – also schnelle Prozesse für hohe Stückzahlen – und gleichzeitig den hohen Sicherheitsanforderungen Rechnung trägt. Sie wird bei führenden Chipmodulherstellern bereits eingesetzt.

Zusammenfassung

Diese Entwicklungsrichtungen zeigen deutlich, dass in lichthärtenden Klebstoffen noch große Potenziale zur Weiterentwicklung stecken. Selbst bei den lichthärtenden Acrylaten, die inzwischen schon seit mehreren Jahrzehnten in Einsatz sind, finden sich immer wieder Möglichkeiten zur Optimierung. Und die strahlungshärtenden Epoxidklebstoffe sind mit einem Alter von ca. 15 Jahren noch weit von dem Zenit ihrer technischen Möglichkeiten entfernt. Es gibt außer den genannten noch weitere, sehr viel versprechende Entwicklungsansätze in den Labors der Klebstoffhersteller. Beispiele sind lichthärtende Klebstoffe mit hoher Temperaturstabilität oder neue Methoden zur Sensibilisierung von Photoinitiatoren, um größere Wellenlängenbereiche für die Aushärtung nutzbar zu machen. Aber nicht nur an den Klebstoffen selbst wird geforscht und entwickelt, auch bei den Aushärtelampen stehen neue Innovationen vor der Marktreife. Besonders die Leuchtdioden-Technologie hat in den letzten Jahren große Fortschritte gemacht und zwar sowohl hinsichtlich der emittierten Wellenlängen, der Intensität des ausgestrahlten Lichtes sowie der Lebensdauer. Die ersten wirklich leistungsfähigen Aushärtelampen mit Leuchtdioden statt konventionellen Quecksilberdampflampen werden in absehbarer Zeit auf dem Markt erscheinen.

Dr. Michael Stumbeck | DELO Industrie Klebstoffe
Weitere Informationen:
http://www.delo.de

Weitere Berichte zu: Aushärtung Klebstoff Temperaturstabilität Vergussmasse Verklebung

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue „Arbeitskluft“ für Polizei und Feuerwehr soll Einsätze und Umwelt schützen
23.01.2018 | Deutsche Bundesstiftung Umwelt (DBU)

nachricht Komplexe Parkettmuster, außergewöhnliche Materialien
23.01.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics