Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano-Kontakte optimieren Haftung

25.05.2004


Optimale Haftung von Geckos und Insekten beruht auf Formoptimierung und Größenreduzierung der Haftkontakte, berichten Stuttgarter Max-Planck-Forscher


Abb. 1: Nano-skalige Fibrillenstrukturen in den haarigen Haftungsstrukturen von Käfer, Fliege, Spinne und Gecko. Die Zahl der Oberflächenhaare erhöht sich mit dem Körpergewicht der Tiere. Dabei verfügt der Gecko über die höchste Dichte unter allen bisher untersuchten Tierarten.
Bild: Max-Planck-Institut für Metallforschung/Gorb


Abb. 2: Die optimale Form für zwei sich berührende Materialien wird so definiert, dass sich bei Zugbelastung die Spannung konstant und gleichmäßig über der Fläche verteilt und auf diese Weise keine Spannungsüberhöhungen auftreten. Damit kann die maximal mögliche Haftkraft erreicht werden. Vom praktischen Standpunkt aus wird eine robuste optimale Haftung bei etwa100 Nanometern erreicht, wenn die Adhäsionsstärke nicht mehr von kleinen Abweichungen von der optimalen Form abhängt.
Bild: Max-Planck-Institut für Metallforschung



Die Haftstrukturen an den Füßen von Geckos und vielen Insekten bestehen aus nur wenige hundert Nanometer feinen Härchen. Diese Nanostrukturen haben sich vermutlich im Laufe der Evolution entwickelt haben, um die Haftung der Insekten auf Substraten zu optimieren. Dies zeigen jüngste Forschungen am Max-Planck-Institut für Metallforschung in Stuttgart: Danach hängt eine optimale Haftung davon ab, dass diese Härchen an ihren Kontaktflächen optimal geformt sind. Doch diese starke Formabhängigkeit kann durch eine Minimierung der Haftkontakte ausgeglichen werden. Denn unterhalb von 100 Nanometer haften die Kontakte optimal - unabhängig von Formveränderungen der Kontaktflächen. Eine optimale, fehlertolerante Haftung lässt sich also über eine Kombination aus Größenreduzierung und Formoptimierung erzielen. Dabei gilt: Je kleiner die charakteristische Größe des einzelnen Haftkontakts, desto weniger wichtig ist seine Form. Das macht auch plausibel, warum Haarkontakte von biologischen Haftungssystemen nur zwischen einigen hundert Nanometern und wenigen Mikrometern groß sind. Diese Erkenntnisse sind wichtig für das Design von Haftsystemen in der Technik. (PNAS, Early Edition, 17. Mai 2004).



Schweißen, Sintern, Diffusionsschweißen sowie neuartige Wafer-bonding-Technologien sind einige der am häufigsten verwendeten Methoden, um strukturell unterschiedliche Bauteile miteinander zu verbinden. Werden zwei Gegenstände durch Haftung oder Adhäsion verbunden, und dann externen Belastungen unterworfen, so können Spannungskonzentrationen in der Nähe der Verbindung auftreten. Erhöht sich die Last weiter, erreicht die Spannungsintensität schließlich ein kritisches Niveau und ein kleiner Riss entsteht. Dieser wird immer größer, bis die Verbindung schließlich bricht. Die Ursache liegt darin, dass nicht das ganze Material in die Haftung einbezogen ist, sondern nur ein kleiner Teil in der Nähe der Spannungskonzentration intensiv belastet wird und sich Risse ausbreiten. Wie man eine robuste und zuverlässige Adhäsion zwischen strukturell unterschiedlichen Bauteilen erreichen kann, ist für Ingenieure bislang ein wenig verstandenes Problem.

Deshalb sind Haftungsmechanismen, die über Jahrmillionen in der biologischen Evolution "erprobt" und verbessert wurden, nicht nur für Biologen, sondern auch für Ingenieure von Interesse. So haben Geckos und viele Insekten an ihren Füßen haarige Strukturen (so genannte spatulae), die als Haftungsvorrichtungen dienen. Hierbei stellte sich heraus, dass sich die Dichte der Oberflächenhaare mit dem Körpergewicht der Tiere erhöht. Unter allen Tierarten, die man bislang untersucht hat, haben Geckos die höchste Anzahl an spatulae pro Flächeneinheit. Sie sind - im Vergleich zu Fliegen und anderen Insekten - auch relativ schwere Tiere.

Diese biologischen Haftmechanismen hat man bisher mit ganz unterschiedlichen Konzepten erklärt, wie beispielsweise mit Kapillarkräften. Inzwischen aber wurde nachgewiesen, dass beim Haftmechanismus der Geckos die so genannten van der Waals-Kräften eine dominierende Rolle spielen. Van-der-Waals Kräfte sind, verglichen mit der Stärke richtiger Atombindungen, relativ schwache Wechselwirkungen. Diese Kräfte entstehen durch kurzzeitig auftretende asymmetrische Ladungsverteilungen um die Atome. Die Tatsache, dass Van-der-Waals-Kräfte eine dominierende Rolle spielen sollen, erscheint zunächst überraschend, denn wir brauchen eine viel größere Kraft, um einen Gecko von der Decke zu ziehen, als unsere Hand vom Tisch zu nehmen, und das, obwohl in beiden Fällen die gleiche van der Waals-Kraft wirkt. Damit stellt sich die Frage, was genau die Stärke der Haftung (Adhäsion) bestimmt. Die chemische Struktur der Materialien jedenfalls kann nicht erklären, warum die gleiche van der Waals-Kraft eine so starke Adhäsion beim Gecko, nicht aber beim Menschen ergibt. Anscheinend hat die Natur andere, ausgefeilte Mechanismen entwickelt, damit bestimmte Tierarten, für die Adhäsion das Überleben ermöglicht, die schwachen van der Waals-Kräfte nutzen können.

H. Gao und H. Yao vom Max-Planck-Institut für Metallforschung in Stuttgart haben jetzt ein Modell für die Haftung zwischen einer einzelnen spatula und einem Substrat entwickelt, das auf van der Waals-Wechselwirkungen beruht. Danach hat die Form der Oberfläche einer spatula großen Einfluss auf die Stärke der Haftung, und ob dabei die maximale Haftkraft erreicht wird. Die Wissenschaftler zeigen, dass es eine besondere Form der spatulae gibt, bei der - unabhängig von ihrer Größe - in jedem Fall die maximale theoretische Haftkraft erreicht wird. Hat die spatula diese optimale Form, verteilt sich die Haftkraft gleichmäßig über die gesamte Berührungsfläche. Das entspricht optimaler Materialverwendung.

Doch warum wird eine solche optimale Form bislang in der Technik nicht verwendet? Ein Grund liegt sicherlich darin, dass die maximal erreichbare Haftkraft sehr empfindlich ist gegenüber kleinen Schwankungen in der Geometrie der Haftkontakte. So nimmt die Haftkraft bei einer Faser mit einem Radius von einem Millimeter um mehr als zwei Größenordnungen ab, wenn die Form der Faser nur um etwa ein bis zwei Prozent von ihrer optimalen Form abweicht. Doch die Forscher fanden heraus, dass diese Überempfindlichkeit gegenüber der Form interessanterweise durch Verkleinerung der Größe, also des Durchmessers der Faser, beseitigt werden kann. Verringert sich der Faserdurchmesser auf eine kritische Größe, erreicht die Haftkraft den maximalen theoretischen Wert, unabhängig von kleinen Veränderungen in ihrer Form. Die kritische Längenskala schätzen die Wissenschaftler auf circa 100 Nanometer.

Folglich kann man in der Natur und potenziell auch in der Technik eine optimale Haftung durch eine Kombination von Größenreduzierung und Formoptimierung erreichen. Dabei gilt: Je kleiner die Faser, desto weniger wichtig ist ihre Form. Sind dennoch große Berührungsflächen notwendig, so kann eine optimale Adhäsion erreicht werden, wenn es gelingt, die Form der Haftkontakte in ausreichender Präzision herzustellen. Vom praktischen Standpunkt aus ist es allerdings notwendig, die Berührungsgröße möglichst zu verkleinern, um eine robuste und gleichzeitig optimale Adhäsion zu erreichen. Dieser Zusammenhang zwischen Größenreduzierung und Formoptimierung könnte auch in der Technik wichtige Anwendungen finden.

Originalveröffentlichung:

H. Gao, H. Yao
Shape insensitive optimal adhesion of nanoscale fibrillar structures
Proceedings of the National Academy of Sciences of the USA, 2004, Vol. 101, no. 21, pp. 7851-7856, Early Edition, published May 17, 2004, 10.1073/pnas.0400757101


Weitere Informationen erhalten Sie von:

Prof. Dr. Huajian Gao
Max-Planck-Institut für Metallforschung, Stuttgart
Tel.: 0711 689-3510
Fax: 0711 689-3512
E-Mail: hjgao@mf.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie