Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrisch leitfähiges Polymer in grün komplettiert die drei Grundfarben - auf dem Weg zum Kunststoff-Display?

16.03.2004


Drei Farben reichen aus, um jeden beliebigen Farbeindruck zu erzeugen: die Grundfarben Rot, Blau und Grün. Rote und blaue elektrochrome Polythiophene - elektrisch leitfähige Polymere, die ihre Farbe in Abhängigkeit von der angelegten Spannung ändern - gab es schon, fehlte nur noch der Dritte im Bunde, die Farbe Grün. Amerikanische Forscher um Fred Wudl haben diese Lücke nun geschlossen - dies ist ein wichtiger Schritt für die Entwicklung optoelektronischer Komponenten auf Polymer-Basis, wie Kunststoff-Displays.


Auf dem Fernseh-Bildschirm oder Computer-Monitor entstehen farbige Bilder, weil jeder der winzigen Bildpunkte (Pixel) aus drei einzelnen, mit Farbfiltern ausgestatteten Arealen besteht, die getrennt angesteuert werden. Bei heutigen Flachbildschirmen funktioniert dieses Ansteuern, indem eine Spannung an eine mit Flüssigkristallen gefüllte Zelle angelegt wird, die wie eine Art schaltbares "Licht-Ventil" transparent oder lichtundurchlässig sein kann. Die teuren Flüssigkristallzellen könnte man einsparen, wenn sich die Farbfilter direkt schalten ließen. Prinzipiell ist eine solche Lösung vorstellbar - mit Hife farbiger, elektrisch leitfähiger Kunststoffe, die Elektrochromie zeigen. Elektrochromie bedeutet, dass das Polymer die Farbe wechselt, wenn sich die elektrische Spannung ändert. Für eine Anwendung in Displays sollen die Polymere zwischen einer der drei Grundfarben und einem transparenten Zustand wechseln.

Während rote und blaue elektrochrome Polymere relativ leicht zugänglich sind, ist es schwierig, eine grüne Variante zu entwickeln. Warum? Die Farbe kommt zu Stande, weil ein Teil des sichtbaren Lichts in einem bestimmten Wellenlängenbereich vom Elektronensystem der Polymermoleküle absorbiert wird. Die durch die Kunststoffschicht durchtretenden übrigen Lichtwellen addieren sich zu dem beobachteten Farbeindruck. Damit Rot oder Blau entsteht, muss das Polymer nur eine Absorptionsbande haben, für die Farbe Grün dagegen braucht es sowohl eine Bande im roten als auch im blauen Spektralbereich. Wird das Molekül durch Anlegen einer Spannung aus dem neutralen in einen oxidierten Zustand versetzt, soll es transparent werden, beide Banden müssen also in ein und dem selben Spannungsbereich verschwinden - fast ein Ding der Unmöglichkeit. Wudl und seine Kollegen griffen daher zu einem Trick: Sie konstruierten ein Polymermolekül, dessen Rückgrat zwei voneinander unabhängige farbgebende Elektronensysteme trägt, für jede der beiden benötigten Absorptionsbanden eines. Der neue Polythiophen-Abkömmling ist das erste elektrisch leitfähige Polymer, das im Neutralzustand grün ist, und komplettiert damit die Polythiophen-Farbtrilogie.


Kontakt:

Prof. F. Wudl
Department of Chemistry and Biochemistry and
Exotic Materials Institute
University of California
Los Angeles, CA 90095-1569
Fax: (+1) 310-8250767
E-mail: wudl@chem.ucla.edu

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.chem.ucla.edu
http://www.angewandte.org

Weitere Berichte zu: Elektrochromie Grundfarbe Kunststoff-Display Polymer

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Eigenschaften von Magnetmaterialien gezielt ändern
16.11.2016 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie