Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innovative Solarmodulkonzepte

02.09.2003

Die Solarstromwirtschaft boomt: Weltweit werden jährlich Solarmodule mit einer Fläche von etwa vier Millionen Quadratmeter neu installiert. In Europa dürfte der sonnenreiche Sommer dieser Entwicklung noch einen zusätzlichen Schub verleihen. Allein die deutsche Solarindustrie erwartet für dieses Jahr ein Umsatzwachstum von 25 Prozent. Einzig die hohen Kosten für die Produktion von Solarmodulen stehen einer noch schnelleren Verbreitung der Technologie entgegen. Rund 30 Prozent des Verkaufspreises für Solarmodule entfallen zurzeit auf die Verkapselung der Solarzellen - ein Tribut an die hohen Anforderungen, die insbesondere an deren Haltbarkeit gestellt werden: Nach zehn Jahren müssen sie noch 90 Prozent der ursprünglichen Leistung liefern, nach 25 Jahren immerhin noch 80 Prozent, damit sich die Investition für den Käufer amortisiert.

Gefragt sind deshalb Solarmodulkonzepte, die zu einer Vereinfachung und Beschleunigung des Montageprozesses führen. Eine wichtige Rolle spielt dabei der Ersatz bisher verwendeter Materialien durch Kunststoffe. Bayer Polymers, ein Unternehmensbereich der Bayer AG, hat mit umfangreichem Know-how und einem breit gefächerten Programm an polymeren Werkstoffen verschiedene innovative Konzepte entwickelt. Damit hergestellte Testmodule haben die in internationalen Normen (IEC 61215, Ispra Test) beschriebenen Stabilitätstests wie UV-Bewitterung, Feuchtwärmetest und extreme Temperaturwechsel bei Bayer Polymers bereits bestanden. Zurzeit werden sie in größerem Maßstab bei Kunden geprüft.

Solarzellen sicher verpackt - mit Polyurethan Etwa die Hälfte aller zurzeit hergestellten Solarmodule wird zur Stabilisierung mit einem Aluminiumrahmen ausgestattet. Die Montage ist zeitaufwändig und teuer, ebenso wie die Gewinnung des Metalls und seine Verarbeitung. "Unsere langjährigen guten Erfahrungen mit dem Polyurethan Bayflex® MP zur Ummantelung von Autoscheiben brachten uns auf die Idee, diesen witterungsstabilen Kunststoff auch für die Umrahmung der Solarmodule einzusetzen", erläutert dazu Dr. Gunther Stollwerck, der das Solartechnik-Projekt bei Bayer Polymers leitet.

Das Polyurethan-Elastomer eignet sich wegen seiner guten Fließfähigkeit bei geringen Verarbeitungsdrücken ideal für diese Anwendung. Der Herstellprozess ist denkbar einfach: Zuerst werden auf die äußere Scheibe die Solarzellen-Strings mit einer Schmelzklebefolie auflaminiert. Danach wird das Laminat auf der Rückseite und am Rand nach dem RIM-Verfahren mit dem Polyurethan-Schaum in einem Schuss umspritzt. Dadurch ist ein dauerhafter Schutz der empfindlichen Solarzellen gegen Feuchtigkeit und Schmutz gewährleistet, auf die üblicherweise eingesetzte Tedlarfolie kann verzichtet werden.

"Durch die Ummantelung mit Bayflex® lassen sich sowohl Material- als auch Investitionskosten senken. Auch die kürzeren Zykluszeiten von wenigen Minuten leisten einen wichtigen Beitrag, um die Produktion von Solarmodulen wirtschaftlicher zu gestalten", bringt Dr. Andreas Hoffmann, Experte für Polyurethanschaumsysteme bei Bayer Polymers, die Vorteile dieser Technologie auf den Punkt. So kostet zum Beispiel ein PU-Rahmen für ein Solarmodul mit 1,3 Quadratmetern Fläche weniger als die Hälfte eines Aluminiumrahmens gleicher Größe. Ein weiteres Plus: im PUR-Rahmen lassen sich die Anschlussdose und Befestigungselemente direkt integrieren.

Das Solarmodul mit Bayflex® Rahmen weist eine große elektrische Durchschlagfestigkeit von mehr als 7 kV/mm auf und widersteht auch den hohen Temperaturen, wie sie in einem heißen Sommer auf dem Dach auftreten können. Architekten und Bauherren bietet sich zudem noch ein optischer Vorteil, denn im Gegensatz zur auffälligen Kästchenstruktur einer Solaranlage mit Alu-Rahmen sieht ein Verbund aus mehreren Solarmodulen mit PUR-Rahmen aus wie eine durchgehende Fläche.

Optimierte Verkapselung von Solarzellen mittels thermoplastischer PU-Folien Eine weitere Kunststoffentwicklung von Bayer Polymers rund um das Thema Solarmodule betrifft die direkte Umhüllung der empfindlichen Solarzellen. Nahezu alle Solarmodulhersteller verwenden dafür bis jetzt einen Ethylen-Vinylacetat-Kautschuk (EVA). Ein Nachteil dieses Verfahrens ist die geringe Produktivität, da EVA chemisch vernetzt werden muss, was mit einem hohen Zeitaufwand verbunden ist: "Mit einem Vakuumlaminator und EVA erreicht man eine Zykluszeit von 12 bis 20 Minuten. Bei Verwendung von Folien aus dem thermoplastischen Polyurethan (TPU) Desmopan® ließe sich die Zykluszeit deutlich reduzieren, da bei der Verarbeitung keine Vernetzungszeit zu berücksichtigen ist", erläutert dazu Jens Ufermann, Spezialist für TPU-Werkstoffe bei Bayer Polymers.

Die Folien weisen eine hohe UV-Stabilität und Transparenz auf. Sie lassen sich neben dem Vakuumlaminator auch in einem Rollenlaminator verarbeiten. Vorteile bietet insbesondere das letztgenannte Verfahren, denn es erlaubt eine kontinuierliche und damit stark zeitsparende Produktion von Solarmodulen von der Rolle. Im Vergleich zu Vakuumlaminieranlagen liegen die Investitionskosten hier deutlich niedriger. Desmopan® ist im Vergleich zu EVA ein wesentlich einfacher zu handhabendes Material, denn es kann leicht über längere Zeit gelagert werden, ohne dass besondere Klimabedingungen eingehalten werden müssten. Mit Desmopan® Folien gefertigte Solarmodule können außerdem im Falle von Beschädigungen repariert werden, und sollten sie nach langer Lebensdauer einmal durch ein neueres Modell ersetzt werden, lässt sich das Material leicht recyceln.

Schlagzähe Solarmodule mit innovativem Design Eine Reihe von Solarmodulanwendungen lassen sich mit Glas nicht oder nur schwer realisieren. Ein Einsatz in maritimer Umgebung, z.B. auf Segelyachten, ist aus Sicherheitsgründen verboten. Für architektonische Anwendungen ist ein hohes Maß an Gestaltungsfreiheit gefragt, um kreative Lösungen zu ermöglichen. Öffentliche Einrichtungen wie z.B. Haltestellen für den Nahverkehr müssen vor Vandalismus geschützt werden. Für diese Anwendungen bieten sich Massiv- oder Stegplatten aus dem schlagzähen, transparenten und witterungsstabilen Hochleistungskunststoff Makrolon® an. Die Platten werden von der Makroform GmbH, einer 100prozentigen Tochter von Bayer, hergestellt, die Solarmodule von der Sunovation GmbH.

Da Kunststoffe und Silicium-Wafer einen deutlich unterschiedlichen Wärmeausdehnungskoeffizienten haben, müssen die Solarzellen mit einem weichen, gelartigen Medium zwischen den Makrolon® Platten eingegossen werden. Für das Gießharz werden glasklare Polyurethan-Rezepturen auf Basis von Desmodur® W entwickelt, die derzeit geprüft werden.

| BayNews
Weitere Informationen:
http://www.bayer.de

Weitere Berichte zu: Bayflex Desmopan EVA Folie Kunststoff Polymer Polyurethan Solarmodul Solarmodulkonzept Solarzelle Zykluszeit

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie