Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomaterialien als Vorbild für extrem harte Verbundwerkstoffe

17.06.2003


Montanuniversität auf der Spur der optimalen Festigkeit



Wissenschafter der Montanuniversität Leoben und des Max-Planck-Instituts haben nachgewiesen, dass extreme Festigkeit von Biomaterialien auf einer bisher unbekannten Fehlertoleranz-Schwelle im Nanometer-Bereich beruht. Demnach haben Verbundwerkstoffe bessere mechanische Eigenschaften, wenn die harten Partikel, welche zur Verstärkung dienen, nur wenige Nanometer groß sind. Die Forscher haben die Erkenntnisse beim Studium von Naturstoffen wie Knochen oder Zähnen gewonnen. Die Ergebnisse der Forschung werden auch im Proceedings of the National Academy of Sciences (PNAS) veröffentlicht.



Bis heute war es unklar, wie in der Natur harte und sehr feste Materialien aus einer Mischung aus sehr weichen Proteinen und extrem spröden Mineralien entstehen. Zwar ist inzwischen bekannt, dass dabei der Komposit-Charakter von biologischen Materialien eine wichtige Rolle spielt, doch über die Längenskala der darin enthaltenen Mineralteilchen wußten die Forscher bisher nur wenig. Forscher des Instituts für Metallphysik der Montanuniversität Leoben, dem Erich Schmid Institut der Österreichischen Akademie der Wissenschaften (ÖAW) und dem Max-Planck-Institut für Metallforschung in Stuttgart konnten nun erklären, warum Verbundwerkstoffe bessere mechanische Eigenschaften haben, wenn die harten Partikel nur im Nanometer-Bereich liegen. "Der Grund dafür ist, dass Risse gewöhnlich von Defekten ausgehen, weil in der Nähe dieser Defekte Überhöhungen der elastischen Spannungen auftreten", so Peter Fratzl von der Montanuniversität Leoben. Durch Computersimulation konnten die Forscher nun nachweisen, dass in extrem kleinen Teilchen diese Spannungsüberhöhung nicht mehr auftreten kann. "Auf dieser Größenskala verformt sich das ganze Teilchen gleichmäßig und das Material wird tolerant gegenüber Defekten", erklärt der Experte.

Die Idee zu diesen Berechnungen entstand durch das Studium von Biomaterialien, die in Leoben in den vergangenen Jahren intensiv erforscht worden sind. "Viele dieser harten Biomaterialien wie zum Beispiel Muschelschalen haben gemeinsam, dass es sich um Verbunde zwischen einer weichen Proteinmatrix und extrem harten aber auch extrem kleinen Nano-Partikeln handelt", erläutert Fratzl. Mit Hilfe eines mathematischen Modells haben die Wissenschaftler nachgewiesen, dass Mineralkristalle, die einen Riss enthalten, bei einer kritischen Größe von ungefähr 30 Nanometer die Rissfestigkeit eines perfekten, defektfreien Kristalls aufweisen. "Außerdem haben wir eine Methode entwickelt, die verdeutlicht, dass das Spannungsfeld in der Nähe eines wachsenden Risses immer homogener wird, je kleiner die Ausdehnung der Struktur ist", so Fratzl. Unterhalb dieser kritischen Größe sind Partikel unempfindlich gegenüber rißähnlichen Materialdefekten. Diese Ergebnisse erklären, warum Knochen, die aus Partikeln von nur einigen Nanometern Größe bestehen, wesentlich fester sind als Muschelschalen, deren Teilchen einige hundert Nanometer groß sind, erklärt Fratzl

Wolfgang Weitlaner | pressetext.austria
Weitere Informationen:
http://www.unileoben.ac.at

Weitere Berichte zu: Biomaterial Nanometer Partikel Riss Teilchen Verbundwerkstoff

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Neue Beschichtung bei Industrieanlagen soll Emissionen senken
12.12.2017 | Technische Universität Kaiserslautern

nachricht Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften