Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biomaterialien als Vorbild für extrem harte Verbundwerkstoffe

17.06.2003


Montanuniversität auf der Spur der optimalen Festigkeit



Wissenschafter der Montanuniversität Leoben und des Max-Planck-Instituts haben nachgewiesen, dass extreme Festigkeit von Biomaterialien auf einer bisher unbekannten Fehlertoleranz-Schwelle im Nanometer-Bereich beruht. Demnach haben Verbundwerkstoffe bessere mechanische Eigenschaften, wenn die harten Partikel, welche zur Verstärkung dienen, nur wenige Nanometer groß sind. Die Forscher haben die Erkenntnisse beim Studium von Naturstoffen wie Knochen oder Zähnen gewonnen. Die Ergebnisse der Forschung werden auch im Proceedings of the National Academy of Sciences (PNAS) veröffentlicht.



Bis heute war es unklar, wie in der Natur harte und sehr feste Materialien aus einer Mischung aus sehr weichen Proteinen und extrem spröden Mineralien entstehen. Zwar ist inzwischen bekannt, dass dabei der Komposit-Charakter von biologischen Materialien eine wichtige Rolle spielt, doch über die Längenskala der darin enthaltenen Mineralteilchen wußten die Forscher bisher nur wenig. Forscher des Instituts für Metallphysik der Montanuniversität Leoben, dem Erich Schmid Institut der Österreichischen Akademie der Wissenschaften (ÖAW) und dem Max-Planck-Institut für Metallforschung in Stuttgart konnten nun erklären, warum Verbundwerkstoffe bessere mechanische Eigenschaften haben, wenn die harten Partikel nur im Nanometer-Bereich liegen. "Der Grund dafür ist, dass Risse gewöhnlich von Defekten ausgehen, weil in der Nähe dieser Defekte Überhöhungen der elastischen Spannungen auftreten", so Peter Fratzl von der Montanuniversität Leoben. Durch Computersimulation konnten die Forscher nun nachweisen, dass in extrem kleinen Teilchen diese Spannungsüberhöhung nicht mehr auftreten kann. "Auf dieser Größenskala verformt sich das ganze Teilchen gleichmäßig und das Material wird tolerant gegenüber Defekten", erklärt der Experte.

Die Idee zu diesen Berechnungen entstand durch das Studium von Biomaterialien, die in Leoben in den vergangenen Jahren intensiv erforscht worden sind. "Viele dieser harten Biomaterialien wie zum Beispiel Muschelschalen haben gemeinsam, dass es sich um Verbunde zwischen einer weichen Proteinmatrix und extrem harten aber auch extrem kleinen Nano-Partikeln handelt", erläutert Fratzl. Mit Hilfe eines mathematischen Modells haben die Wissenschaftler nachgewiesen, dass Mineralkristalle, die einen Riss enthalten, bei einer kritischen Größe von ungefähr 30 Nanometer die Rissfestigkeit eines perfekten, defektfreien Kristalls aufweisen. "Außerdem haben wir eine Methode entwickelt, die verdeutlicht, dass das Spannungsfeld in der Nähe eines wachsenden Risses immer homogener wird, je kleiner die Ausdehnung der Struktur ist", so Fratzl. Unterhalb dieser kritischen Größe sind Partikel unempfindlich gegenüber rißähnlichen Materialdefekten. Diese Ergebnisse erklären, warum Knochen, die aus Partikeln von nur einigen Nanometern Größe bestehen, wesentlich fester sind als Muschelschalen, deren Teilchen einige hundert Nanometer groß sind, erklärt Fratzl

Wolfgang Weitlaner | pressetext.austria
Weitere Informationen:
http://www.unileoben.ac.at

Weitere Berichte zu: Biomaterial Nanometer Partikel Riss Teilchen Verbundwerkstoff

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie