Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanostrukturiertes Material entdeckt , das elektrische Energie in mechanische Energie direkt umwandelt

11.04.2003


Rasterelektronenmikroskop-Aufnahme der Oberflächenstruktur von nanoporösem Platin aus dem Institut für Nanotechnologie des Forschungszentrums Karlsruhe


Muskeln aus Metall für Miniaturroboter oder Kleinprothesen - das ist eine der Visionen, die durch eine Entdeckung des Forschungszentrums Karlsruhe Wirklichkeit werden könnte.


Wissenschaftler entwickelten ein neuartiges nanoporöses Metall, das sich beim Anlegen einer elektrischen Spannung reversibel ausdehnt. So kann elektrische Energie direkt in mechanische Energie umgewandelt werden. Weltweit erstmalig lassen sich damit an einem Metall makroskopisch messbare Längenänderungen durch Anlegen von geringen elektrischen Spannungen hervorrufen. Dank dieses Durchbruchs können verschiedene mikrotechnische Komponenten realisiert werden, die inzwischen zum Patent angemeldet worden sind: Schalter und Regler, direkte Spannungsanzeiger oder andere Sensoren, Aktuatoren sowie - die Umkehrung des Effektes ausnutzend - Bewegungswandler.

In der Edelgaskondensationsanlage im Institut für Nanotechnologie des Forschungszentrums Karlsruhe werden nanostrukturierte Partikel, beispielsweise aus Platin, hergestellt.


Rasterelektronenmikroskop-Aufnahme der Oberflächenstruktur von nanoporösem Platin aus dem Institut für Nanotechnologie des Forschungszentrums Karlsruhe.
Die Zukunft gehört den Nanomaterialien. Durch das extrem hohe Verhältnis von Oberflächen zu gefülltem Raum (Volumen) weisen sie Eigenschaften auf, die von denen unserer Erfahrungswelt stark abweichen. Ein Durchbruch in der Nanowelt ist nun Wissenschaftlern des Forschungszentrums Karlsruhe gelungen.

"Wir haben zunächst nanostrukturiertes Platin hergestellt", erklärt Dr. Jörg Weissmüller, der dieses Projekt am Institut für Nanotechnologie des Forschungszentrums Karlsruhe leitet. "Dabei wird ein Festkörper aus kleinen Nanopartikeln mit vielen dazwischen liegenden Poren aufgebaut." Diese Form des Platins ändert beim Anlegen einer elektrischen Spannung ihre Ausdehnung in einer Stärke, die bisher mögliche Werte bei Metallen um ein Vielfaches übersteigt. Die Längenänderungen sind makroskopisch messbar.

Damit wird eine Vielzahl von Anwendungen möglich, die vorher unerreichbar schienen. So können aus dem nanostrukturierten Platin so genannte Aktuatoren gebaut werden, das sind Bauelemente, die elektrische Arbeit direkt in Bewegung umsetzen. Die Anwendungen reichen von mikroskopischen Ventilen, die entweder von außen oder - abhängig von ihrer Umgebung - auch selbständig geschaltet werden, über adaptive Optiken oder intelligente Materialien, die bei Bedarf ihre Form ändern, bis zu künstlichen Muskeln für Miniaturroboter oder Kleinprothesen.

Weitere Anwendungen sind Dosiereinheiten, Schalter und Regler (etwa zum Öffnen und Schließen eines Stromkreises) oder Messgeräte für Ionen oder elektrische Spannungen.

Der umgekehrte Effekt - die Umwandlung von Beschleunigung in einen Stromimpuls (analog etwa einem Piezokristall) - lässt sich für Bewegungs- oder Kraftsensoren nutzen, wie sie beispielsweise für die Auslösung von Airbags im Auto verwendet werden.


Wissenschaftlicher Hintergrund

Die Experimente, über die in der aktuellen Ausgabe der Zeitschrift "Science" (11. April 2003) berichtet wird, wurden mit nanostrukturiertem Platin durchgeführt. Reines Platin wird dabei durch Verdampfen und anschließende Kondensation in einer dünnen Edelgasatmosphäre in weniger als 5 Nanometer (Millionstel Millimeter) große Partikel überführt, die durch Pressen zu einem nanoporösen Körper kompaktiert werden. Der entstandene Festkörper wird in eine leitfähige Flüssigkeit, einen so genannten Elektrolyten, getaucht, der die Hohlräume ausfüllt. Durch den Elektrolyten, eine Säure oder Lauge, können elektrische Ladungen zu allen Nanopartikeln des Festkörpers transportiert werden. Anlegen einer elektrischen Spannung verändert die elektrische Ladung des Elektrolyten. Dadurch werden an den Oberflächen der Nanopartikel ebenfalls elektrische Ladungen induziert. Die Atome ändern durch die Ladungsveränderung die Zahl der Elektronen in der Hülle und damit quasi ihre chemische Identität.

Im Prinzip ist der genannte Effekt aus der Halbleiterphysik gut bekannt; dort liegen ähnliche Vorgänge dem Funktionsprinzip von Feldeffekttransistoren zu Grunde, den wichtigsten Bausteinen integrierter Schaltkreise. Das aufregend Neue besteht bei Metallen darin, dass die induzierte Ladung nicht - wie in Halbleitern - über eine vergleichsweise breite Raumladungszone ausschmiert; stattdessen verbleibt die Ladung in einer eng lokalisierten Zone nahe der Oberfläche. Dort ist die Ladungsdichte sehr viel höher als in Halbleitern, so dass die Überschussladung bis zu (plus oder minus) ein Elektron pro Atom betragen kann. Das bedeutet, dass es prinzipiell möglich wird, die Oberflächenatome reversibel in ihrem chemischen Charakter um plus oder minus eine Ordnungszahl im Periodensystem zu verschieben, ein Vorgang, der bisher mit physikalischen Methoden nicht realisiert werden konnte. Da die Elektronenstruktur ausschlaggebend für praktisch alle physikalischen Eigenschaften ist, öffnen sich hiermit ganz neue Wege für Materialien mit reversibel schaltbaren Eigenschaften, zum Beispiel schaltbare magnetische und optische Eigenschaften oder schaltbare Phasengleichgewichte.

In einer ersten Anwendung ist der Effekt bei den Experimenten im Institut für Nanotechnologie dazu eingesetzt worden, die atomaren Bindungsverhältnisse in der Oberfläche zu beeinflussen: Die Oberflächenatome tendieren dann dazu, entweder näher zusammenzurücken oder sich weiter voneinander zu entfernen. Im Gegensatz zu makroskopischen Festkörpern dominieren bei den Nanopartikeln die Oberflächen das Verhalten. Durch die veränderten Atomabstände ändert sich deshalb die Größe der Nanopartikel und somit - da sich alle Partikel in die gleiche Richtung verändern - die Größe des gesamten Festkörpers. Er zieht sich zusammen oder dehnt sich aus. Schon bei relativ kleinen Spannungen (unter einem Volt) können in dem nanoporösen Platin Längenänderungen von bis zu 0,15 % erzielt werden. Damit lassen sich weltweit erstmals an einem Metall makroskopisch messbare Längenänderungen durch Anlegen von geringen elektrischen Spannungen hervorrufen.

Joachim Hoffmann | Forschungszentrum Karlsruhe
Weitere Informationen:
http://www.fzk.de

Weitere Berichte zu: Festkörper Ladung Metall Nanopartikel Nanotechnologie Platin

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

nachricht Neues Material macht Kältemaschinen energieeffizienter
10.04.2018 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics