Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Struktur nichtkristalliner Materialien auf der Spur

04.04.2003


Uralt und doch ein fortschrittlicher Werkstoff - Glas bietet unermesslich viele Ein-satz-möglichkeiten. Als alltäglicher Gebrauchs-gegenstand ist Glas für uns unver-zichtbar. Aber auch in der Kunst, Architektur, Optik und Elektronik bis hin zur Raumfahrt haben glasartige Materialien ihren Platz gefunden. In einem Sonderfor-schungsbereich an der Universität Bonn entlocken Forscher seit 1995 dem Glas seinen räumlichen Aufbau. Kommende Woche treffen sich 120 Experten für glasartige Materialien in Bonn, um sich einen Überblick über den neuesten Stand der Forschung auf diesem Gebiet zu verschaffen.



Wann Glas zum ersten Mal durch Menschenhand erschaffen worden ist, weiß keiner. Schon in Urzeiten entstand bei Vulkanausbrüchen beim raschen Abkühlen der Lava ein natürliches Glas, der Obsidian. Unsere Vorfahren in der Jungsteinzeit fertigten aus die-sem Schmuck, Pfeil- und Speerspitzen. "Bei den Römern wurde Glas mit Gold aufgewo-gen", berichtet Professor Dr. Werner Mader vom Institut für Anorganische Chemie der Universität Bonn. Heute wäre die moderne Kommunikationsgesellschaft ohne Glas nicht denkbar. Daten werden über Glasfasern, so dünn wie ein Menschenhaar, in einem ra-santen Tempo geschickt. Im Internet surfen, mit dem Ausland telefonieren und das Ange-bot des Kabelfernsehens genießen - alles ist durch Glasfaserkabel möglich.



Für viele Anwendungen, besonders im High-Tech-Bereich, sind Gläser mit bestimmten Eigenschaften erforderlich. "Aber die Eigenschaften eines Festkörpers fallen nicht vom Himmel, sondern sind wesentlich in dessen Struktur begründet", erklärt Professor Mader. In Kristallen herrscht Ordnung. Alle Bausteine haben ihren festen Platz in einem regelmä-ßigen Gitter - so auch im Quarz, Hauptbestandteil der meisten Sandarten. Durch starkes Erhitzen wird aber das Gitter dieses kristallinen Siliziumdioxids zerstört und baut sich beim schnellen Abkühlen der Schmelze nicht wieder auf. Es ist ein Glas entstanden. In diesem Quarzglas, Prototyp eines Glases, verknüpfen sich die kleinen Baueinheiten aus Silizium und Sauerstoff ohne feste Regeln und bilden so ein unregelmäßiges Netzwerk. Zusätze, wie Kalk und Soda in unserem Fensterglas, lockern das Netzwerk auf. "Die Ei-genschaften eines Glases können so gezielt modifiziert werden", sagt Professor Mader. Aber selbst Wissenschaftlern ist der exakte räumliche Aufbau in einem Glas ein Rätsel. "Unklar ist das Verknüpfungsmuster der Bausteine. Dieses variiert gar etwas in ein und demselben Glaskörper von Ort zu Ort", erklärt Mader. Moderne Methoden, die hervorra-gend geeignet sind die Struktur in einem Kristall aufzuklären, scheitern bisher gerade an der Unordnung in einem Glas.

Der Sonderforschungsbereich 408 soll Licht in das Geheimnis Glas bringen. Wie ordnen sich die kleinen Bausteine innerhalb kurzer Distanzen räumlich an? Zur Zeit stellen sich an Instituten der Universität Bonn sowie der Fachhochschule Bonn-Rhein-Sieg Forscher in insgesamt 17 wissenschaftlichen Teilprojekten dieser kniffligen Frage. Als erstes er-schaffen die Chemiker neue Silikatgläser sowie weitere glasartige Materialien aus ande-ren ein Netzwerk aufbauenden Elementen, unter anderem Phosphatgläser. Und da wird es ganz bunt im Labor. Kleine positiv geladene Teilchen, sogenannte Kationen, eingebaut in einem Gerüst aus Phosphor und Sauerstoff verleihen dem Glas Farbe. Grün oder blau - ein wertvoller Hinweis auf den strukturellen Aufbau. Jedes einzelne Glas hat seine eige-ne Struktur. Da müssen die gängigen Methoden zur Strukturaufklärung eines Kristalls den Wissenschaftlern weiterhelfen. Zudem kreieren die Forscher mit viel Tüftelei und hoher Mathematik rechnergestützte Strukturmodelle mit einer Größe von einigen Tausend bis zu einigen Millionen Atomen. "Was im Labor gar nicht möglich ist, in Sekundenbruchteilen einen Stoff auf mehrere Tausend Grad aufzuheizen und ihn dann ebenso schnell wieder abzukühlen, gelingt im Computer", erklärt der Sprecher des Sonderforschungsbereichs Professor Dr. Johannes Beck vom Institut für Anorganische Chemie der Universität Bonn.

Die Theorie hilft den Forschern, die Strukturverhältnisse in glasartigen Materialien besser zu verstehen. Professor Mader sagt: "Wir sehen heute schon ein bisschen klarer - das war ein langer Weg." Wer die Struktur besser versteht, kann auch Glaseigenschaften im Hinblick auf deren gewünschten Einsatzbereich verbessern. "Die meisten Innovationen kommen aus der Grundlagenforschung", sagt Mader. So fand eine Sorte glasartiger Ke-ramiken, richtige High-Tech-Gläser mit phantastischen Eigenschaften, hier in Bonn ihren Ursprung. Sie sind selbst bei extrem hohen Temperaturen stabil und mechanisch belast-bar. Geflechte aus langen Fasern dieser Materialien sind die Basis leichter Werkstoffe von Morgen, die sich nicht nur für die Raumfahrt eignen.

Von Dienstag, 8. April, bis Samstag, 12. April, tagt die "Crème de la crème" der Glasforschung auf Einladung des Sonderforschungsbereichs 408 im Hauptgebäude der Univer-sität Bonn. 120 Experten aus aller Welt - von Ägypten bis zu den USA - werden daran teilnehmen.
Ansprechpartner:
Professor Dr. Johannes Beck
Sprecher des Sonderforschungsbereichs 408
Telefon: 0228/73-2708
E-Mail: j.beck@uni-bonn.de
Professor Dr. Werner Mader
Institut für Anorganische Chemie der Uni Bonn
Telefon: 0228/73-4203
E-Mail: mader@uni-bonn.de


v | idw
Weitere Informationen:
http://www.uni-bonn.de/Aktuelles/Presseinformationen/2003/112.html
http://www.concim2003.uni-bonn.de

Weitere Berichte zu: Abkühlen Anorganisch Kristall Raumfahrt

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Perowskit-Solarzellen: Es muss gar nicht perfekt sein
15.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Fraunhofer IMWS testet umweltfreundliche Mikroplastik-Alternativen in Kosmetikartikeln
11.01.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie