Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Smart Surface Technology - Glänzende Aussichten für Kunststoffe

18.02.2003


Erstmals ist es gelungen, dreidimensional verformbare, leuchtende Kunststoffteile herzustellen, die kaum Energie verbrauchen, keine Wärme abgeben und darüber hinaus extrem langlebig und wartungsfrei sind.



Die dahinter stehende "Smart Surface Technology" ermöglichte die Entwicklung flacher, integrierbarer Leuchtobjekte für ein breites Spektrum von Anwendungen. Die Kunststoffformteile werden als komplett funktionsfähige Module in einem Arbeitsgang gefertigt, also mit minimalem Montageaufwand. Diese klaren Vorteile sowie das große Marktpotenzial dieser Technologie haben nun Früchte getragen: im Wettbewerb um den 23. Innovationspreis der deutschen Wirtschaft kam die Entwicklung in die engere Wahl, Bayer Polymers belegte einen der ersten sechs Plätze in der Kategorie Großunternehmen.

Bisher konnten Kunststoffformteile nur durch zusätzliche Bauelemente und mit beträchtlichem Montageaufwand in Leuchtobjekte verwandelt werden. So waren für die Herstellung einer Heiz-/Lüfterblende für den Autoinnenraum mindestens fünf verschiedene Baukomponenten nötig, was einen hohen Logistikaufwand bedeutete. Dank Smart Surface Technology gelingt die Fertigung in einem Arbeitsgang, wobei die Bauteile dank der dreidimensionalen Verformbarkeit des Folienaufbaus beliebig an die räumlichen Bedingungen des Einbauortes und die Design-Vorgaben angepasst werden können. Eckard Foltin, Leiter des Creative Centers im Bereich Business Development bei Bayer Polymers und verantwortlich für diese Entwicklung, unterstreicht deren große Bedeutung: "Damit erfüllen wir den Wunsch der Automobilindustrie, die Orientierung im Kfz-Innenraum durch ´ambiente´ Beleuchtung zu optimieren."

Wie funktioniert nun die Lichterzeugung bei den Kunststoffteilen? Eine flächig bedruckte Makrofol® / Bayfol® Folie aus PC / PC+PBT Blend bildet die "smarte" Oberfläche des Kunststoffteils. Sie zeichnet sich durch hohe Transparenz, Flexibilität und Dimensionsstabilität aus. Durch sie gelangt das Licht nach außen, das in dem darunter liegenden mehrschichtigen Bedruckungssystem erzeugt wurde. Dieses besteht aus einer ebenfalls transparenten Elektrode, z.B. aus Baytron® P der Bayer Tochtergesellschaft H.C. Starck, und einer darunter liegenden Gegenelektrode. Beide sind durch ein Dielektrikum voneinander getrennt. Wird nun an die Elektroden eine Spannung angelegt, erzeugt das System kaltes Licht mit sehr gleichmäßiger Ausleuchtung. Es funktioniert praktisch umgekehrt wie eine Solarzelle: Während dort das einfallende Sonnenlicht in eine elektrische Spannung umgewandelt wird, sorgt hier eine außen angelegte Spannung für die Lichterzeugung. Diese Erscheinung bezeichnet man als Elektrolumineszenz, EL.

Bei der hier beschriebenen Entwicklung können z.B. handelsübliche Batterien verwendet werden, deren meist niedrige Spannung mittels eines Inverters in die benötigte Wechselspannung von 110 Volt transformiert wird. In Abhängigkeit von der angelegten Spannung kann die Lichtintensität variiert werden. Der Schwerpunkt der Entwicklung lag darin, dass die bedruckte Folie zunächst verformt und in einem weiteren Schritt mit einem Bayer Thermoplasten hinterspritzt werden kann. Damit wird das Spektrum möglicher Anwendungen noch beträchtlich erweitert.

Die Entwicklung basiert auf einer engen Zusammenarbeit zwischen Bayer und der schweizerischen Lumitec AG, die das EL-System im Schichtaufbau zum Patent angemeldet und darüber hinaus auch den Spannungswandler entwickelt hat. Neben den hier eingesetzten Makrofol® / Bayfol® Folien brachte Bayer das Know-how für die In-Mold-Decoration Technologie, IMD, ein, mit dem sich die Oberflächen der Kunststoffteile variabel gestalten lassen. Das Leverkusener Unternehmen erarbeitete auch die verarbeitungstechnischen Grundlagen zur Fertigung des Formteils.

Neben der bereits vorgestellten Blende bestehen Möglichkeiten, weitere Bedienelemente im Kfz-Innenraum, außerdem Türschweller und andere optisch wichtige Teile damit auszustatten. Auch für Blenden und Schalter von Haushaltsgeräten lassen sich leuchtende Kunststoffformteile vorteilhaft verwenden. Ebenso interessant sind Möglichkeiten des Einsatzes zur Erhöhung von Sicherheit und Komfort, z.B. bei der Beleuchtung von Notausgängen oder der Ausstattung von Sicherheitskleidung. Sehr praktisch könnte die Innenbeleuchtung von Damenhandtaschen, Koffern, Rucksäcken und Kühltruhen gestaltet werden. Selbst in Nassräumen und Schwimmbädern geht das Licht nicht aus - die Kunststoffteile sind wasserdicht.

Pressestelle | BayNews
Weitere Informationen:
http://www.bayer.de

Weitere Berichte zu: Folie Kunststoffformteil Kunststoffteil Smart Surface Technology

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie