Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Superlicht für Wissenschaft und Industrie

26.11.2002


Mit kurzwelligen Röntgenstrahlen werden in einem so genannten Diffraktometer Kristalle und Pulver untersucht, um innere Strukturen und Kristallgrößen hochgenau zu vermessen.


Der Speicherring der Synchrotronstrahlungsquelle ANKA hat einen Umfang von 110 Metern. Durch gelbe Ablenkmagnete wird die Synchrotronstrahlung erzeugt, die in Messhütten außerhalb der sternförmigen Beton-Ummantelung zur Verfügung steht.


Synchrotronstrahlungsquelle ANKA im Forschungszentrum Karlsruhe nun uneingeschränkt verfügbar


Die Synchrotronstrahlungsquelle ANKA (ÅNgströmquelle KArlsruhe) wurde im Forschungszentrum Karlsruhe im Jahr 2001 in Betrieb genommen. Seither sind die Betriebsbedingungen optimiert und die Strahlrohre für analytische Messungen sowie für die Fertigung von Mikrobauteilen aufgebaut worden. Ab Anfang 2003 steht die Anlage uneingeschränkt für die wissenschaftliche und wirtschaftliche Nutzung zur Verfügung. Während die Strahlzeit für Industriekunden von der eigens dafür gegründeten ANKA GmbH vermarktet wird, koordiniert das Forschungszentrum die Nutzung durch Wissenschaftler von nationalen und internationalen Forschungseinrichtungen. Strahlzeit für wissenschaftliche Vorhaben kann nun erstmals bis zum 31. Dezember 2002 beantragt werden, danach jeweils zum 30. Juni und zum Jahresende. Eine internationale Expertenkommission begutachtet die Anträge und entscheidet über die Zuteilung der halbjährlich 3000 Stunden Strahlzeit.

Mit Synchrotronstrahlung kann man die Oberfläche und das Innere von Bauteilen und Materialien zerstörungsfrei untersuchen. Zusammensetzung, Struktur, chemische, elektronische, magnetische und mechanische Eigenschaften werden so, im wahrsten Sinne des Wortes, einsehbar. Beispielsweise lassen sich Gläser untersuchen, deren amorphe Struktur mit konventionellen Methoden nicht erfasst werden kann. Auf diese Weise können Fertigungsprozesse kontrolliert und optimiert werden. Für die zerstörungsfreie Analytik von Materialien stehen an ANKA Strahlrohre mit Röntgen-Absorptionsspektroskopie (EXAFS) und Röntgen-Fluoreszenz für den Spurenelementnachweis, Röntgen-Topographie und Diffraktometrie für die Untersuchung kristalliner Materialien (einschließlich Kristallographie für Proteine und Makromoleküle) und schließlich Infrarot für Spektroskopie, Mikroskopie sowie Ellipsometrie zur Verfügung.


Bei der Mikrofertigung mit dem im Forschungszentrum Karlsruhe entwickelten LIGA-Verfahren (LIGA = Röntgentiefen-Lithographie, Galvanik und Abformung) stellt man durch gezielte Bestrahlung von Plexiglas hochgenaue Urformen her. Über anschließende Vervielfältigungsverfahren können Mikrobauteile aus Metall, Kunststoff oder Keramik wirtschaftlich hergestellt werden. Auf diesem Gebiet nimmt das Forschungszentrum eine weltweit führende Stellung ein. An ANKA stehen für Strukturierungsaufgaben verschiedene Wellenlängen zur Verfügung: für die Herstellung von Masken bis zu einer Wellenlänge von 100 µm, für die routinemäßige Fertigung von Mikrostrukturen bis 500 µm und für explorative Entwicklungen auch im mm-Bereich.

Die Nachfrage nach Synchrotronstrahlung bei Industrie und Wissenschaft ist groß. Im Forschungszentrum Karlsruhe selbst besteht ein steigender Bedarf im Rahmen von Mikrofertigung, Umweltanalytik und Nanotechnologie. Deshalb wurde im September 1996 mit der Errichtung der Synchrotronstrahlungsquelle ANKA begonnen. Das Projekt mit einem Gesamtaufwand von rund 36 Mio. Euro wurde aus Mitteln des Bundes, des Landes Baden-Württemberg und des Forschungszentrums Karlsruhe finanziert. Das große Engagement des Landes Baden-Württemberg, das abweichend vom üblichen Finanzierungsschlüssel 50 % der Beschaffungskosten trug, zielt vor allem darauf ab, eine zukunftsweisende Infrastruktur für Wissenschaft und Wirtschaft zur Verfügung zu stellen.


Synchrotronstrahlung

In einem Synchrotron werden Elementarteilchen (Elektronen oder ihre Antiteilchen, die Positronen) auf einer kreisförmigen Bahn auf hohe Energien beschleunigt; in ANKA erreichen Elektronen eine Endenergie von 2,5 GeV (Giga-Elektronenvolt = Milliarden Elektronenvolt). Die Elektronen kreisen dann im Hochvakuum mit beinahe Lichtgeschwindigkeit in einem ringförmigen Speicherrohr von 110 Meter Umfang.

Die Ablenkung der Elektronen auf die Kreisbahn erfolgt durch Magnete. Bei der Ablenkung im Magnetfeld erzeugen die Elektronen die so genannte Synchrotronstrahlung. Synchrotronstrahlung ist elektromagnetische Strahlung wie Sonnenlicht oder Radiowellen. Sie hat aber besondere Eigenschaften, die sie für viele Anwendungen wertvoll macht: Sie zeichnet sich durch ein kontinuierliches Spektrum von der harten Röntgenstrahlung über Ultraviolett und sichtbares Licht bis ins ferne Infrarot aus (40 keV bis 0,5 meV). Darüber hinaus hat sie eine um Größenordnungen höhere Strahlungsintensität und Brillanz als herkömmliche Lichtquellen; das Licht ist hochparallel und polarisiert. Für die meisten Anwendungen ist insbesondere der Röntgenanteil der Strahlung von Interesse.

Interessenten können Strahlzeit für wissenschaftliche Projekte bis zum 31. Dezember 2002 beantragen. Technische Informationen für Nutzer sowie Antragsformulare können unter http://www.fzk.de/iss abgerufen werden.

Das Forschungszentrum Karlsruhe ist Mitglied der Helmholtz-Gemeinschaft, die mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2,1 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands ist. Die insgesamt 24 000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft forschen in den Bereichen Struktur der Materie, Erde und Umwelt, Verkehr und Weltraum, Gesundheit, Energie sowie Schlüsseltechnologien.

Anfragen zur Nutzung der Synchrotronstrahlung bitte an Herrn Dr. Michael Hagelstein (Telefon 07247/82-6186, e-Mail: Michael.Hagelstein@iss.fzk.de).

Inge Arnold | idw
Weitere Informationen:
http://www.fzk.de/iss

Weitere Berichte zu: ANKA Elektron Mikrofertigung Strahlzeit Synchrotronstrahl

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

nachricht Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus
17.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie