Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Rückfederung von Blechen nutzen

17.10.2002


Simulation des Fraunhofer IWM spart Zeit und Kosten bei der Umformung von Stählen, Magnesium und Aluminium



Bisher ließ sie sich nur mit viel handwerklichem Geschick und jahrelanger Erfahrung wettmachen: die Rückfederung von Blechen nach dem Umformen, etwa zum Kotflügel oder zum Getriebetunnel fürs Auto. Doch seit im Automobilbau Leichtbauteile an Bedeutung gewinnen, für die diese jahrelange Erfahrung fehlt, wächst der Bedarf an rechnerisch basierten Vorhersagen für das Verhalten der Bleche. Aufgrund seiner erfolgreichen Vorlaufforschung kann das Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg jetzt ein solches Simulationsmodell anbieten: "Eine Innovation, die dafür sorgen kann, dass besonders die Werkzeug- und Pressenhersteller Entwicklungszeit und -aufwand sparen. Nur so werden die Entwicklungskosten beherrschbar", meint Projektleiter Dr. Winfried Schmitt. Sein Team stellt das innovative Simulationsmodell vom 22. bis 26. Oktober 2002 auf der Euroblech in Hannover vor (Halle 11, Stand C13).



Im März 2000 gründete das Fraunhofer IWM das Kompetenzzentrum Bauteilsimulation (www.simbau.de). Finanziert wird das Kompetenzzentrum vom Bundesforschungsministerium, Geschäftsführer ist Winfried Schmitt. Rund 10 Prozent der Gesamtfördersumme von
2,5 Millionen Euro flossen in die Vorhersage der Rückfederung von Blechen nach dem Umformen. "Eine richtige Entscheidung, denn die Hälfte der eingesetzten Mittel ist bereits durch Industrieaufträge refinanziert", bilanziert der Fraunhofer-Mitarbeiter.


Die Kunden des Fraunhofer IWM kommen wie ThyssenKrupp aus der Stahlherstellung, wie die Firma Müller-Weingarten aus dem Werkzeugbau oder wie Karmann direkt aus der Automobilherstellung. Sie alle wollen lernen, wie eine Presse oder ein Werkzeug so entwickelt werden kann, dass es möglichst auf Anhieb die Rückfederung des Bleches kompensiert und die vom Designer gewünschte Form erreicht. Damit ein Simulationsmodell eine solche Vorhersage treffen kann, muss es gefüttert werden - etwa mit Daten zur Geschwindigkeit, mit der ein Werkzeug-Stempel auf das Blech trifft, und zur Kraft, mit der die Halterung das Blech fest platziert. Was bisher fehlte, waren die Daten zum genauen Verhalten der Bleche selbst, wenn sie gezogen oder gebogen werden. "Meist geschieht sogar beides gleichzeitig und relativ nah beieinander", erläutert Winfried Schmitt, wie komplex die Berechnung ist. Zumal sich Bleche alles andere als linear verändern. Bisher der entscheidende Grund dafür, dass die Prognosen oft daneben lagen.

Das innovative Simulationsmodell des Fraunhofer IWM gründet denn auch auf einer ausgeklügelten Messtechnik, die punktgenau die Verformung eines Bleches unter Zug- und Druckbelastung untersucht. Erst sie erlaube, so Projektleiter Schmitt, zusammen mit den geometrischen Daten des Werkzeuges, eine verlässliche Vorhersage. Ziel des Fraunhofer IWM sei es, der Industrie die Simulation jeweils abgestimmt auf die konkrete Anwendung als Dienstleistung anzubieten. "Wir wissen, dass da ein enormer Zeitdruck auf uns zukommt", sagt Schmitt. Denn die Anpassung an das Rückfedern komme ganz am Ende des zeitaufwändigen und kostspieligen Entwicklungsprozesses zum Tragen.

Die Schwierigkeiten und damit die hohen Entwicklungskosten für die Werkzeugherstellung sind aus Sicht von Schmitt ein Grund dafür, dass sich neue Leichtbauwerkstoffe in der Automobilindustrie bisher nur schwer durchsetzen konnten - trotz aller Vorteile für das Endprodukt. Neue Perspektiven durch das neue Simulationsmodell sieht der Fraunhofer-Mitarbeiter auch in einer Branche, die sehr viel kleinere Bauteile herstellt. Für die Telekommunikations- und Elektronikbranche sind langlebige Steckverbindungen enorm wichtig. Auch hier spielten Druck und Zug bei Qualität oder Verschleiß eines Kupfersteckers eine entscheidende Rolle.

Ansprechpartner:
Thomas Götz
Telefon +49 (0) 7 61 / 51 42-1 53
Fax +49 (0) 7 61 / 51 42-1 10
goetz@iwm.fraunhofer.de


Thomas Götz | idw
Weitere Informationen:
http://www.iwm.fraunhofer.de

Weitere Berichte zu: Blech Rückfederung Simulationsmodell

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops