Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keramik aus Holz

25.08.2000


Konversion bioorganischer

Kohlenstoff-Strukturen in keramische Verbundstrukturen durch

Hochtemperatur-Verfahren


... mehr zu:
»Keramik »Modellierung »Simulation
Interdisziplinäres Projekt im Rahmen des DFG-Schwerpunktprogrammes "Analysis, Modellierung und Simulation von Mehrskalenproblemen"

Gefördert von der Deutschen Forschungsgemeinschaft gehen Wissenschaftler an den Universitäten Augsburg und Erlangen-Nürnberg der Frage nach, wie sich die mechanischen Eigenschaften von aus Holz gewonnenen Keramiken optimieren lassen. Dieses interdisziplinäre Projekt "Structural Optimization of Biomorphic Cellular Silicon Carbide Ceramics with Microstructures by Homogenization Modeling" wird von der DFG mit 238.000 DM an Sach- und Personalmitteln pro Jahr unterstützt und hat eine Laufzeit von maximal sechs Jahren.

Gegenstand des Forschungsvorhabens ist die Optimierung mechanischer Eigenschaften mikrostrukturierter biomorpher Keramiken. Natürlich gewachsene Materialien wie Holz werden dabei unter Ausnutzung ihrer mikrostrukturellen Eigenschaften verfahrenstechnisch zur Herstellung von Keramiken hoher Festigkeit verarbeitet. Diese Technik ist Teil der sich gegenwärtig schnell entwickelnden innovativen materialwissenschaftlichen Disziplin "Biomimetik". Der Herstellungsprozess erfolgt unter Verwendung von Verfahren des sogenannten "Biotemplating".

Das Holz wird zunächst getrocknet und sodann bei hoher Temperatur pyrolisiert, wobei ein bioorganisches Kohlenstoff-Template von im wesentlichen gleicher Mikrostruktur wie dies des originalen Materials entsteht. Das Template wird danach durch Siliziumgas oder Siliziumschmelze infiltriert. Durch Reaktion des Siliziums mit dem Kohlenstoff bildet sich die Siliziumkarabid-Keramik heraus, die anschließend noch durch Ätzen und Polieren nachbehandelt wird.

Ziele des Forschungsvorhabens sind die mathematische Modellierung und numerische Simulation des mechanischen Verhaltens solcher Keramiken sowie deren optimale Auslegung unter Berücksichtigung der mikrostrukturellen kristallographischen Textur, die durch hochauflösende Messverfahren experimentell bestimmt wird.

Die Leitung der Forschungsarbeiten liegt an der Universität Augsburg bei Prof. Dr. Ronald H.W. Hoppe, dem Inhaber des Lehrstuhls für Angewandte Analysis mit Schwerpunkt Numerik am Institut für Mathematik; sie erfolgen in Kooperation mit Dr. Heino Sieber, dem Leiter der Gruppe "Biomimetische Materialsynthese" des Lehrstuhls für Glas und Keramik am Institut für Werkstoffwissenschaften der Friedrich-Alexander-Universität Erlangen-Nürnberg.

KONTAKT UND WEITERE INFORMATIONEN:

Prof. Dr. Ronald H. W. Hoppe
Lehrstuhl für Angewandte Analysis mit Schwerpunkt Numerik
Universität Augsburg, D-86135 Augsburg
Telefon: 0821/598-2194, Telefax: 0821/598-2339, e-mail: hoppe@math.uni-augsburg.de

Klaus P. Prem |

Weitere Berichte zu: Keramik Modellierung Simulation

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Hält die Klebung?
29.05.2017 | Technische Hochschule Mittelhessen

nachricht Wussten Sie, dass Verpackungen durch Flash Systeme intelligent werden?
23.05.2017 | Heraeus Noblelight GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode zur Charakterisierung von Graphen

Wissenschaftler haben eine neue Methode entwickelt, um die Eigenschaften von Graphen ohne das Anlegen störender elektrischer Kontakte zu charakterisieren. Damit lassen sich gleichzeitig der Widerstand und die Quantenkapazität von Graphen sowie von anderen zweidimensionalen Materialien untersuchen. Dies berichten Forscher vom Swiss Nanoscience Institute und Departement Physik der Universität Basel im Wissenschaftsjournal «Physical Review Applied».

Graphen besteht aus einer einzigen Lage von Kohlenstoffatomen. Es ist transparent, härter als Diamant, stärker als Stahl, dabei aber flexibel und ein deutlich...

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Detaillierter Blick auf molekularen Gifttransporter

Transportproteine in unseren Körperzellen schützen uns vor gewissen Vergiftungen. Forschende der ETH Zürich und der Universität Basel haben nun die hochaufgelöste dreidimensionale Struktur eines bedeutenden menschlichen Transportproteins aufgeklärt. Langfristig könnte dies helfen, neue Medikamente zu entwickeln.

Fast alle Lebewesen haben im Lauf der Evolution Mechanismen entwickelt, um Giftstoffe, die ins Innere ihrer Zellen gelangt sind, wieder loszuwerden: In der...

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftsforum Chemie 2017

30.05.2017 | Veranstaltungen

Erfolgsfaktor Digitalisierung

30.05.2017 | Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Methode zur Charakterisierung von Graphen

30.05.2017 | Physik Astronomie

Riesenfresszellen steuern die Entwicklung von Nerven und Blutgefäßen im Gehirn

30.05.2017 | Biowissenschaften Chemie

Nano-U-Boot mit Selbstzerstörungs-Mechanismus

30.05.2017 | Biowissenschaften Chemie