Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keramik aus Holz

25.08.2000


Konversion bioorganischer

Kohlenstoff-Strukturen in keramische Verbundstrukturen durch

Hochtemperatur-Verfahren


... mehr zu:
»Keramik »Modellierung »Simulation
Interdisziplinäres Projekt im Rahmen des DFG-Schwerpunktprogrammes "Analysis, Modellierung und Simulation von Mehrskalenproblemen"

Gefördert von der Deutschen Forschungsgemeinschaft gehen Wissenschaftler an den Universitäten Augsburg und Erlangen-Nürnberg der Frage nach, wie sich die mechanischen Eigenschaften von aus Holz gewonnenen Keramiken optimieren lassen. Dieses interdisziplinäre Projekt "Structural Optimization of Biomorphic Cellular Silicon Carbide Ceramics with Microstructures by Homogenization Modeling" wird von der DFG mit 238.000 DM an Sach- und Personalmitteln pro Jahr unterstützt und hat eine Laufzeit von maximal sechs Jahren.

Gegenstand des Forschungsvorhabens ist die Optimierung mechanischer Eigenschaften mikrostrukturierter biomorpher Keramiken. Natürlich gewachsene Materialien wie Holz werden dabei unter Ausnutzung ihrer mikrostrukturellen Eigenschaften verfahrenstechnisch zur Herstellung von Keramiken hoher Festigkeit verarbeitet. Diese Technik ist Teil der sich gegenwärtig schnell entwickelnden innovativen materialwissenschaftlichen Disziplin "Biomimetik". Der Herstellungsprozess erfolgt unter Verwendung von Verfahren des sogenannten "Biotemplating".

Das Holz wird zunächst getrocknet und sodann bei hoher Temperatur pyrolisiert, wobei ein bioorganisches Kohlenstoff-Template von im wesentlichen gleicher Mikrostruktur wie dies des originalen Materials entsteht. Das Template wird danach durch Siliziumgas oder Siliziumschmelze infiltriert. Durch Reaktion des Siliziums mit dem Kohlenstoff bildet sich die Siliziumkarabid-Keramik heraus, die anschließend noch durch Ätzen und Polieren nachbehandelt wird.

Ziele des Forschungsvorhabens sind die mathematische Modellierung und numerische Simulation des mechanischen Verhaltens solcher Keramiken sowie deren optimale Auslegung unter Berücksichtigung der mikrostrukturellen kristallographischen Textur, die durch hochauflösende Messverfahren experimentell bestimmt wird.

Die Leitung der Forschungsarbeiten liegt an der Universität Augsburg bei Prof. Dr. Ronald H.W. Hoppe, dem Inhaber des Lehrstuhls für Angewandte Analysis mit Schwerpunkt Numerik am Institut für Mathematik; sie erfolgen in Kooperation mit Dr. Heino Sieber, dem Leiter der Gruppe "Biomimetische Materialsynthese" des Lehrstuhls für Glas und Keramik am Institut für Werkstoffwissenschaften der Friedrich-Alexander-Universität Erlangen-Nürnberg.

KONTAKT UND WEITERE INFORMATIONEN:

Prof. Dr. Ronald H. W. Hoppe
Lehrstuhl für Angewandte Analysis mit Schwerpunkt Numerik
Universität Augsburg, D-86135 Augsburg
Telefon: 0821/598-2194, Telefax: 0821/598-2339, e-mail: hoppe@math.uni-augsburg.de

Klaus P. Prem |

Weitere Berichte zu: Keramik Modellierung Simulation

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics