Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keramik aus Holz

25.08.2000


Konversion bioorganischer

Kohlenstoff-Strukturen in keramische Verbundstrukturen durch

Hochtemperatur-Verfahren


... mehr zu:
»Keramik »Modellierung »Simulation
Interdisziplinäres Projekt im Rahmen des DFG-Schwerpunktprogrammes "Analysis, Modellierung und Simulation von Mehrskalenproblemen"

Gefördert von der Deutschen Forschungsgemeinschaft gehen Wissenschaftler an den Universitäten Augsburg und Erlangen-Nürnberg der Frage nach, wie sich die mechanischen Eigenschaften von aus Holz gewonnenen Keramiken optimieren lassen. Dieses interdisziplinäre Projekt "Structural Optimization of Biomorphic Cellular Silicon Carbide Ceramics with Microstructures by Homogenization Modeling" wird von der DFG mit 238.000 DM an Sach- und Personalmitteln pro Jahr unterstützt und hat eine Laufzeit von maximal sechs Jahren.

Gegenstand des Forschungsvorhabens ist die Optimierung mechanischer Eigenschaften mikrostrukturierter biomorpher Keramiken. Natürlich gewachsene Materialien wie Holz werden dabei unter Ausnutzung ihrer mikrostrukturellen Eigenschaften verfahrenstechnisch zur Herstellung von Keramiken hoher Festigkeit verarbeitet. Diese Technik ist Teil der sich gegenwärtig schnell entwickelnden innovativen materialwissenschaftlichen Disziplin "Biomimetik". Der Herstellungsprozess erfolgt unter Verwendung von Verfahren des sogenannten "Biotemplating".

Das Holz wird zunächst getrocknet und sodann bei hoher Temperatur pyrolisiert, wobei ein bioorganisches Kohlenstoff-Template von im wesentlichen gleicher Mikrostruktur wie dies des originalen Materials entsteht. Das Template wird danach durch Siliziumgas oder Siliziumschmelze infiltriert. Durch Reaktion des Siliziums mit dem Kohlenstoff bildet sich die Siliziumkarabid-Keramik heraus, die anschließend noch durch Ätzen und Polieren nachbehandelt wird.

Ziele des Forschungsvorhabens sind die mathematische Modellierung und numerische Simulation des mechanischen Verhaltens solcher Keramiken sowie deren optimale Auslegung unter Berücksichtigung der mikrostrukturellen kristallographischen Textur, die durch hochauflösende Messverfahren experimentell bestimmt wird.

Die Leitung der Forschungsarbeiten liegt an der Universität Augsburg bei Prof. Dr. Ronald H.W. Hoppe, dem Inhaber des Lehrstuhls für Angewandte Analysis mit Schwerpunkt Numerik am Institut für Mathematik; sie erfolgen in Kooperation mit Dr. Heino Sieber, dem Leiter der Gruppe "Biomimetische Materialsynthese" des Lehrstuhls für Glas und Keramik am Institut für Werkstoffwissenschaften der Friedrich-Alexander-Universität Erlangen-Nürnberg.

KONTAKT UND WEITERE INFORMATIONEN:

Prof. Dr. Ronald H. W. Hoppe
Lehrstuhl für Angewandte Analysis mit Schwerpunkt Numerik
Universität Augsburg, D-86135 Augsburg
Telefon: 0821/598-2194, Telefax: 0821/598-2339, e-mail: hoppe@math.uni-augsburg.de

Klaus P. Prem |

Weitere Berichte zu: Keramik Modellierung Simulation

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Perowskit-Solarzellen: Es muss gar nicht perfekt sein
15.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Fraunhofer IMWS testet umweltfreundliche Mikroplastik-Alternativen in Kosmetikartikeln
11.01.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften