Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verschleißarme Mäntel für Nähnadeln

19.02.2001


... mehr zu:
»IWM »Nadel »Nähnadel »Schicht »Verschleißarm
Die Nadeln von Industrie-Nähmaschinen sind mechanisch hoch belastete Teile. Daher werden sie mit reibungsarmen Schichten wie diamantähnlichem Kohlenstoff bedampft. Eine neue Anlage beschichtet schnell und gleichmäßig
selbst extrem geformte Stücke.

Bei diesem Duell wäre selbst das tapferste Schneiderlein klar unterlegen: Eine Industrie-Nähmaschine sticht bis zu 160 Mal in der Sekunde zu und vernäht dabei einen Meter Bekleidungsstoff in weniger als drei Sekunden. Bei solchen Geschwindigkeiten erhitzt sich die Nadel durch Reibung mit dem Stoff derart stark, dass ihre Festigkeit und Elastizität leidet.

Um schneller nähen zu können, werden die Nadeln mit Substanzen ummantelt, die die Reibung erniedrigen - diamantähnlicher Kohlenstoff eignet sich dazu besonders gut. Zur Beschichtung wird ein kohlenstoffhaltiges Gas wie Methan oder Acethylen von einem elektrischen Strom zersetzt. Die Kohlenstoffatome scheiden sich auf den Nähnadeln ab und bauen die Schicht in der gewünschten Zusammensetzung auf. Doch fordern spitze Geometrien wie Nadeln den Beschichter heraus: Ähnlich wie ein Blitz in die hervorragende Spitze des Blitzableiters einschlägt, glüht die Spitze der aufrecht stehenden Nähnadel bei der Entladung im Plasma. Die Zusammensetzung der abgeschiedenen Stoffe ist kaum beherrschbar. Genau wie beim Nähen verändern sich oberhalb der »Anlasstemperatur« von rund 300 °C zudem die mechanischen Eigenschaften der meisten Stähle in unerwünschter Weise. In einer Anlage des Fraunhofer-Instituts für Werkstoffmechanik IWM dagegen wachsen die Schichten gleichmäßig und kontrollierbar.

Worauf es bei der Plasmabeschichtung ankommt, erläutert der Ingenieur Sven Meier vom IWM: »Flache und einfach geformte Metallteile werden seit einigen Jahren gleichmäßig mit den unterschiedlichsten Stoffen bedampft. Bei extrem geformten Stücken hingegen wird das elektrische Feld an Spitzen und Kanten stark verzerrt. Dank der besonderen Bauweise unserer Anlage können wir selbst Nähnadeln gleichmäßig und planbar beschichten.«

Die Konstruktion der Anlage bringt weitere Vorteile mit sich: »Durch das gleichmäßigere Beschichten wird auch die freigesetzte Wärmeenergie besser verteilt. Daher können wir je nach Substrat zwanzigmal schneller beschichten als konventionelle Anlagen«, betont Meier. Zudem sind die Apparaturen sehr flexibel aufgebaut. Sie können so schnell an die jeweiligen industriellen Erfordernisse angepasst werden - je nachdem, welche und wieviele Teile pro Zeit mit den reibungsarmen Schichten bedampft werden sollen.

Ansprechpartner:
Dipl.-Ing. Sven Meier
Telefon: 07 61/51 42-2 33
Fax: 07 61/51 42-1 10
smei@iwm.fhg.de

Weitere Informationen finden Sie im WWW:

Dr. Johannes Ehrlenspiel | idw

Weitere Berichte zu: IWM Nadel Nähnadel Schicht Verschleißarm

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie