Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanoröhrchen sollen Bildschirm zum Leuchten bringen

19.10.2000


Von der IBM-Deutschland gestifteter Hahn-Meitner-Technologie-Transfer-Preis zeichnet Materialforscher aus Den von der IBM-Deutschland gestifteten Technologie-Transfer-Preis 2000 des Hahn-Meitner-Instituts haben fünf Materialforscher unter Leitung von Prof. Dr. Alois Weidinger für ihre innovativen - und vermarktungsfähigen - Entwicklungsarbeiten erhalten. Ihre Forschungsergebnisse könnten die Herstellung neuartiger Flachbildschirme entscheidend verbessern. Der mit 10.000 Mark dotierte und im Abstand von zwei Jahren verliehene Preis wurde am 19. Oktober in Anwesenheit von Berlins Senator für Wissenschaft, Forschung und Kultur, Prof. Christoph Stölzl, und dem Vorsitzenden der Geschäftsführung der IBM-Deutschland GmbH, Erwin Staudt, übergeben.

Flachbildschirme sind dabei, die alten Bildröhren-Monitore ins Museum zu schicken, denn die neuen kleinen Geräte bieten überzeugende praktische Vorteile. Nachteilig sind jedoch vor allem die hohen Kosten, so dass weltweit an neuen Verfahren gearbeitet wird, damit Flachbildschirme billiger und noch besser werden.

Eine technologische Alternative zu den heute üblichen Flüssigkristallanzeigen (LCD) bieten Feld-Emissions-Displays (FED). Mit aktiv leuchtenden Bildpunkten können sie stromsparend ohne Hintergrundbeleuchtung betrieben werden und erlauben zudem einen großen seitlichen Betrachtungswinkel. Ihre Herstellungskosten könnten gegenüber LCD deutlich sinken.

Bei einem Feld-Emissions-Display wird jedes aufleuchtende Farbpixel des Monitors von einem separaten Elektronenstrahl angeregt. Im Spannungsfeld zwischen einer rückseitigen Kathodenplatte und der leuchtenden Frontplatte, an der sich die Anode befindet, entsteht ein Flächenschauer von Elektronenstrahlen. Um die Megapixel der Flachbildschirme einzeln anzusprechen, verwendet man wie bei den LCD ein feines Gitternetz aus gekreuzten elektrischen Leitungsbahnen. Spannungsspitzen an den Kreuzungspunkten des Gitters sind Triggersignale der Leuchtpunkte.


Eine technologische Herausforderung bei Feld-Emissions-Displays ist die Mikrostrukturierung einer geeigneten Kathodenplatte. In einem Areal aus isolierendem Material müssen sich elektrisch aktive Zonen befinden, die fein genug verteilt sind, um das Farbmuster des Bildschirms pixelgenau anzusprechen. Mikroskopisch kleine Entladungsspitzen, die durch Prägemasken lithographisch abgeformt werden, sind hierfür in der Erprobung. Eine weniger aufwendige Alternative könnten nanometerfeine Leitungskanäle sein, die vom atomaren Teilchenschauer einer Beschleunigeranlage erzeugt werden.

Als Ausgangsmaterial hierfür eignet sich eine Kohlenstoffstruktur, die in ihrer atomaren Anordnung dem Diamant ähnelt. Schichten dieses Materials lassen sich heute großflächig durch Abscheideverfahren herstellen. Bei einer Bestrahlung mit energiereichen Ionen entstehen in der nicht-leitenden Matrix graphitische Nanoröhrchen, die feine Leitungskanäle bilden. Die Methode nutzt damit das Phänomen, dass Kohlenstoff je nach seiner atomaren Struktur sowohl ein elektrischer Isolator (Diamant) wie ein elektrischer Leiter (Graphit) sein kann. Die Umwandlung der diamantähnlichen Struktur entlang der Ionenspur geschieht durch ein "Aufschmelzen" aufgrund der hohen Energieübertragung und einer anschließenden Erstarrung in einer graphitischen Struktur.

Der Vorteil dieses Verfahrens gegenüber einer lithographisch erzeugten Kathodenschicht liegt in der einfacheren Herstellung und der höheren Lebensdauer der strom-leitenden Stellen. Die Preisträger des Hahn-Meitner-Technologie-Transfer-Preises 2000, Prof. Dr. Alois Weidinger, Dr. Johann Krauser, Dr. Wolfgang Harneit, Markus Waiblinger und Bernd Mertesacker, wollen jetzt in Zusammenarbeit mit der Industrie die Voraussetzungen einer großtechnischen Fertigung klären.

Die insgesamt zwölf Beiträge des Wettbewerbs um den Hahn-Meitner-Technologie-Transfer-Preis 2000 erstrecken sich im wesentlichen über das gesamte Forschungsspektrum des Hahn-Meitner-Instituts und betreffen Ergebnisse von der Solarenergie-Forschung(Photovoltaik und Brennstoffzellenforschung) bis zur grundlagenorientierten Strukturforschung mit dem Schwerpunkt Neutronenoptik

MA Thomas Robertson | idw

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?
30.03.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>