Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geringere Fügekräfte, besserer Halt

17.11.2000


... mehr zu:
»Blech »Fügekräfte »Stempel
Sie verbinden unterschiedliche Werkstoffe und greifen den Oberflächenschutz nicht an: Mechanische Verbindungstechniken wie das Durchsetzfügen sind in der blechverarbeitenden Industrie weit verbreitet.
Eine Weiterentwicklung, das »Radial-/Taumelclinchen«, erweitert den Anwendungskreis des Clinchens nun auch auf Verbindungen, die besonders starken Belastungen ausgesetzt sind.

Blechverbindungen, die besonders starken Belastungen ausgesetzt sind, werden bislang punktgeschweißt. Die Palette reicht von Lüftungskanälen bis hin zu Automobilkarosserien und Schienenfahrzeugen. Eine wirtschaftliche Alternative zum Punktschweißen ist das »Radial-/Taumelclinchen«, eine neue Form des Durchsetzfügens. »Es kommt mit bis zu 90 Prozent weniger Kraft aus und schafft Verbindungen gleich guter oder sogar besserer Qualität als herkömmliche Clinchverfahren«, konnten seine Erfinder Jochen Spingler und Dr. Johannes Wößner in Versuchen belegen. Die geringen Fügekräfte machen es möglich, leichtere Werkzeuge mit größerer Ausladung zu bauen. Davon profitiert sowohl die flexible manuelle Fertigung als auch die automatisierte mit Robotereinsatz an Großbauteilen. Manuelle Fügeeinrichtungen macht das geringere Gewicht leichter handhabbar. Beim Robotereinsatz werden großformatige C-Rahmen möglich. Anstelle der bislang beispielsweise in der Automobilindustrie üblichen stationären Pressen erlauben sie eine wesentlich flexiblere Prozessgestaltung.

Beim Clinchen sind vergleichsweise hohe Fügekräfte erforderlich - ca. 40 - 50 kN pro Punkt beispielsweise bei den derzeitigen Serienanwendungen in der Automobilindustrie. Die Verbindung zwischen den beiden Blechen entsteht durch einen lokalen Umformvorgang. Ein Stempel drückt das Blech in die zugehörige Matrize, wodurch eine druckknopfähnliche Verbindung entsteht. Dabei spielt es keine Rolle, ob die Bleche beschichtet oder oberflächenbehandelt sind, unterschiedliche Dicken haben, aus unterschiedlichen Materialien (z. B. Stahl und Aluminium) sind, oder ob eine Zwischenlage aus Folie oder Papier erforderlich sein sollte. Beim herkömmlichen Clinchverfahren wird der Stempel geradlinig in die Bleche gedrückt. Das Taumelclinchen nutzt die spezifische Stempelkinematik von Taumel- bzw. Radialfügepressen. »Der Fügestempel kann sich auf einer kreisförmigen Bahn oder mit einer abweichenden Kinematik bewegen, z. B. in einer Rosettenbewegung«, erklärt Wößner. Die Stempelbahn führt dabei stets über die Mitte des Fügepunkts, ohne dass der Stempel um die eigene Achse rotiert. Durch die deutlich kleinere Umformzone wirkt auf den Stempel ein vergleichsweise geringe axiale Kraft. Sie ist um 70 - 90 Prozent geringer als beim konventionellen Clinchen.

Die abwälzende Bewegung des Fügestempels formt das Blech im Bereich der Kontaktfläche des Stempels so um, dass der Fügeteilwerkstoff entsprechend der Matrizenform fließt. D. h. der Werkstofffluss findet sowohl in axialer als auch in radialer Richtung statt. Im Fügeelement entsteht ein Hinterschnitt, der die Verbindung extrem belastbar macht. Die derzeit mit dem Taumelclinchen erreichbaren Haltekräfte sind mit den Haltekräften der konventionell hergestellten Clinchpunkte vergleichbar, wenn nicht besser: »Wegen der geringeren Kaltverfestigung des Blechmaterials in der Umformzone im Vergleich zum konventionellen Clinchen kann man bei Taumelclinchpunkten von einer höheren Energieaufnahmefähigkeit und somit von einem günstigeren Crash-Verhalten ausgehen«, ist sich Wößner sicher.

Die ersten im Vorfeld gewonnenen Erkenntnisse zu Grunde legend, geht er außerdem davon aus, dass sich das »Radial-/Taumelclinchen« selbst bei größeren Blechdicken einsetzen lässt. Das betrifft insbesondere den LKW- und im Schienenfahrzeugbau. Hier müssen überwiegend Bleche mit Gesamtdicken von über sechs Millimetern verarbeitet werden. Das wirtschaftlichere Taumelclinchen könnte in vielen Fällen die teuren Schraub-, Niet- und Schweißverfahren ersetzen. Auch bei der Anwendung neuer Werkstoffe und Werkstoffkombinationen für den Leichtbau eröffnet dieses Verbindungsverfahren neue Möglichkeiten. Durch seine speziellen Bewegungen legiert der Stempel bei gewaschenem Aluminium nicht an und die partielle Werkstoffumformung erlaubt es, selbst spröde Materialien zu clinchen. Und nicht nur die: Viele höherfeste Materialien und Edelstahl werden durch die partielle Umformung überhaupt erst serientauglich clinchbar.


Ihre Ansprechpartner für weitere Informationen:
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Dr.-Ing. Johannes Wößner, Telefon: 0711/970-1585, Telefax: 0711/970-1006, E-Mail:  jfw@ipa.fhg.de
Dipl.-Ing. Jochen C. Spingler, Telefon: 0711/970-1202, Telefax: 0711/970-1006, E-Mail: jos@ipa.fhg.de

Dipl.-Ing. Michaela Neuner | idw

Weitere Berichte zu: Blech Fügekräfte Stempel

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie