Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kunststoffe instabiler als angenommen - Zugkräfte lassen Bindungen schmelzen

28.02.2008
Wissenschaftler der Hochschule München und der Christian-Albrechts-Universität Kiel weisen nach, dass Kunststoffe instabiler sind als bislang angenommen.

Die Lebensdauer von chemischen Bindungen in Kunststoffen lässt sich durch anhaltende Krafteinwirkung drastisch verkürzen, so dass es schon bei wesentlich geringeren Zugkräften als bisher angenommen zur Zerstörung der Bindungen und damit zum Materialversagen kommen kann. Dies konnten Wissenschaftler der Hochschule München in Zusammenarbeit mit der Christian-Albrechts-Universität Kiel nachweisen.

Mit einem Rasterkraftmikroskop haben sie den Kraftverlauf bei der Dehnung von kovalenten Silizium-Kohlenstoff-Bindungen in Polymer-Molekülen bis hin zum Zerreißen untersucht und das Verhalten mit einem theoretischen Modell erklärt. Die Arbeit, die im Rahmen des Exzellenz-Clusters "Nanosystems Initiative Munich" (NIM) entstand, wurde jetzt vorab in der Online-Ausgabe der Fachzeitschrift "Journal of the American Chemical Society" (JACS) veröffentlicht.

Unvorhergesehenes Materialversagen kann weit reichende Folgen haben, zum Beispiel wenn ein Bungee-Seil reißt, ein Reifen platzt oder das Dach einer Halle einstürzt. Aus diesem Grund möchten MaterialwissenschaftlerInnen möglichst genau verstehen, welche physikalischen Vorgänge ablaufen, wenn Materialien einer Belastung nicht mehr standhalten können. Reißt zum Beispiel ein Kunststoff-Seil, dann liegt das daran, dass sich die chemischen Bindungen zwischen den Atomen der Polymer-Struktur aufgrund der anliegenden Kräfte lösen. Dabei ist man bisher immer davon ausgegangen, dass die Zugbelastung die maximale Bindungskraft überschreiten muss, um eine Bindung aufzutrennen.

... mehr zu:
»Nanosystem

Der Diplom-Ingenieur Sebastian Schmidt in der Arbeitsgruppe von Professor Hauke Clausen-Schaumann an der Hochschule München konnte in Zusammenarbeit mit dem Chemie-Professor Martin Beyer von der Christian-Albrechts-Universität Kiel nun nachweisen, dass sich die in Polymeren vorherrschenden kovalenten Bindungen schon bei einer Zugbelastung lösen, die weit unterhalb der maximalen Bindungskraft liegt. Einzige Bedingung: die Zugbelastung muss über einen gewissen Zeitraum andauern.

Um zu diesem Ergebnis zu gelangen, haben die Forscher mit der Spitze eines Rasterkraftmikroskops (AFM) Moleküle des Zucker-ähnlichen Polymers Carboxymethylamylose mit verschiedenen Zuggeschwindigkeiten bis zum Zerreißen gedehnt und dabei den Kraftverlauf gemessen. So konnte gezeigt werden, dass die für die Stabilität der Verbindung maßgeblichen Silizium-Kohlenstoff-Bindungen schon bei geringen aber anhaltenden Kräften zerstört werden. Eine Erklärung haben die Wissenschaftler dafür auch parat: Durch die angelegte Kraft wird die Bindungsenergie so weit abgesenkt, dass die Bindung bereits bei Raumtemperatur thermisch zerstört werden kann. Ihre Lebensdauer reduziert sich dadurch auf Sekundenbruchteile und die Bindung löst sich blitzschnell auf. Das dahinter steckende theoretische Modell liefert die so genannte Arrhenius-Gleichung, deren Gültigkeit für den Abriss kovalenter Bindungen bisher noch nicht bewiesen werden konnte. Dieser Beweis ist den Münchner Wissenschaftlern jetzt mit ihrem Experiment gelungen.

Diese grundlegenden Erkenntnisse könnten zu einem tieferen Verständnis von Materialermüdung und Materialversagen beitragen und der Entwicklung neuer Kunststoffe dienen, die außergewöhnlich lang anhaltenden Belastungen widerstehen sollen.

Die vorab in der Online-Ausgabe der Fachzeitschrift "Journal of the American Chemical Society" veröffentlichte Arbeit wurde vom Exzellenz-Cluster "Nanosystems Initiative Munich" (NIM) unterstützt, das es sich zum Ziel gesetzt hat, funktionale Nanostrukturen für Anwendungen in der Medizin und in der Informationsverarbeitung zu entwickeln und zu erforschen.

Veröffentlichung:
Dynamic Strength of the Silicon-Carbon Bond Observed Over Three Decades of Force-Loading Rates, Sebastian W. Schmidt, Martin K. Beyer and Hauke Clausen-Schaumann, JACS (2008)
Kontakt:
Prof. Dr. Hauke Clausen-Schaumann
Hochschule München
Fakultät für Feinwerk- und Mikrotechnik, Physikalische Technik
Tel.: +49 (0) 89 / 1265 - 1417 (Büro), +49 (0) 89 / 1265 - 1671 (Labor)
E-Mail: clausen-schaumann@hm.edu
Prof. Dr. Martin Beyer
Christian-Albrechts-Universität zu Kiel
Institut für Physikalische Chemie
Tel.: +49 (0) 43 / 8802831
E-Mail: beyer@phc.uni-kiel.de
Dr. Peter Sonntag
Nanosystems Initiative Munich
Presse- und Öffentlichkeitsarbeit
Tel.: +49 (0) 89 / 2180 - 5091
E-Mail: peter.sonntag@lmu.de

Christina Kaufmann | idw
Weitere Informationen:
http://www.nano-initiative-munich.de

Weitere Berichte zu: Nanosystem

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kampf dem Plastik mit Verpackungen aus Seetang
15.12.2017 | Australisch-Neuseeländischer Hochschulverbund / Institut Ranke-Heinemann

nachricht Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung
14.12.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik