Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ETH-Forscher entwickeln neues Verbundmaterial

22.02.2008
Materialforscher der ETH Zürich haben sich die Natur zum Vorbild genommen und ein Verbundmaterial geschaffen, das ähnliche Eigenschaften wie Perlmutt von Muscheln besitzt. Ihre Arbeit wurde soeben im Fachmagazin "Science" veröffentlicht.

Für den technologischen Fortschritt braucht es neue und bessere Werkstoffe. Die Materialien sollten leicht, fest und zugleich zäh sein. Perlmutt im Innern von Muschelschalen ist ein Beispiel dafür, wie die Natur diese Aufgabe löst.

Seine guten Eigenschaften verdankt das Perlmutt dem Aufbau in Schichten. Es setzt sich zu 95% aus steifen keramischen Plättchen zusammen, die in einem weichen Biopolymer eingebettet sind. Materialforscher der ETH um Prof. Ludwig Gauckler, Professor für Nichmetallische Werkstoffe, haben nun einen neuen Verbundstoff entwickelt, der dem natürlichen Perlmutt nachempfunden ist.

Der Aufbau dieses künstlichen Hybrid-Materials ist mit einer Backsteinmauer vergleichbar. Winzige, hochfeste Aluminiumoxidplättchen dienen dabei als Backsteine, das Polymer Chitosan hat die Funktion des Mörtels. Das Prinzip, ein Polymer mit anorganischen Plättchen zu mischen, um daraus ein Material mit neuen mechanischen Eigenschaften herzustellen, ist an sich nicht neu. Wichtig sei in diesem Fall jedoch gewesen, die Plättchen konsequent einzeln und klar voneinander getrennt auf das Polymer aufzutragen, betont Gauckler.

... mehr zu:
»Verbundmaterial

Lebenden Organismen wie Muscheln steht nur ein begrenztes Arsenal an Bausteinen zur Verfügung. Besonders die Aragonitplättchen in Perlmutt sind weniger fest als künstliche keramische Plättchen. Die Verwendung solcher hochfester Plättchen macht den Verbundwerkstoff, den die Forschenden der ETH Zürich entwickelt haben, doppelt so stark wie natürliches Perlmutt. Er lässt sich zum Beispiel um 25 Prozent deformieren, ehe er bricht. Perlmutt dagegen geht bei einer Deformation von zwei Prozent bereits in die Brüche.

"Bei der Steifigkeit ist das Naturprodukt dem Kunstprodukt jedoch überlegen", sagt Lorenz Bonderer, Doktorand und Erstautor der Studie. Die Steifigkeit des neuen Materials ist bis zu sieben Mal tiefer als die von Perlmutt, das heisst Perlmutt hat einen grösseren Widerstand gegen Verformung. Ursache für dieses Phänomen ist, dass in der Natur zwar die einzelnen Plättchen schwächer, dafür komplexer angeordnet und zahlreicher sind.

Das neue Verbundmaterial hat noch ein grosses Verbesserungspotential. So sollen beispielsweise andere Polymere oder Plättchen mit einer anderen Geometrie einsetzt werden. Die Fabrikation wird dadurch möglicherweise erleichtert. Auch die Grenzflächen zwischen Plättchen und Polymer können noch optimiert werden - eine Idee, die man zusammen mit einer Forschungsgruppe vom Max-Planck-Institut für Mikrostrukturphysik in Halle weiterentwickelt.

Die Kombination von exzellentem Struktur-Design aus der Natur und künstlichen Bausteinen könnte in Zukunft auch zu anderen Verbundwerkstoffen mit einzigartigen mechanischen Eigenschaften führen. Die konkreten Anwendungen des "künstlichen Perlmutts" stehen im Moment nicht im Vordergrund. Dazu sei es noch zu früh, meint Gauckler. Einen solchen Verbundwerkstoff könnte man überall dort, wo feste und flexible Folien benötigt werden, einsetzen.

Originalbeitrag: Bonderer, Lorenz J., André R. Studart & Ludwig J. Gauckler (2008): Bio-inspired Design and Assembly of Platelet Reinforced Polymer Films, Science Vol. 319, 1069 (2008) DOI: 10.1126/science.1148726

Weitere Informationen:
Lorenz Josef Bonderer
ETH Zürich
Professur für Nichtmetallische Werkstoffe
Telefon +41 (0)44 632 68 53
lorenz.bonderer@mat.ethz.ch

Franziska Schmid | idw
Weitere Informationen:
http://www.ethz.ch

Weitere Berichte zu: Verbundmaterial

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie