Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Verbund für kurze Wellenlängen

05.02.2008
Ein über die Jahre gewachsenes Vertrauen und die hohe Einsatzbereitschaft der Akteure machen den PhotonicNet-Arbeitskreis UV/VUV zum Erfolgsmodell.

Durch die Verwendung immer kürzerer Wellenlängen im Produktionsprozess, wie z.B. beim Aushärten von Harzen und Lacken oder im Lithografieprozess der Waferindustrie, müssen heute spezielle UV-Objektive für Wellenlängen bis 157nm und kürzer gefertigt werden.

Die monochromatische Belichtung bei UV stellt an die verwendeten Optiken höchste Ansprüche. Bei diesen Wellenlängen sind nur noch wenige Materialien wie Quarzglas und Calciumfluorid für die Strahlung durchlässig. Hohe Reinheitsanforderungen sind einzuhalten, da UV-Licht schnell zum Eintrüben der Linsen führen kann. Die eingesetzten Materialien erfordern spezielle Beschichtungsverfahren.

Ein Expertenkreis von rund 30 UV-Optikern tauscht sich seit 6 Jahren regelmäßig über diese und andere Problemstellungen der UV / VUV - Technologien im Strahlungsbereich von 157 bis 400 nm aus. Dabei sind auch Randthemen, wie die Verschmutzung von Laseroptiken oder der Einsatz von Fluorplasma z. B. in Anlagen zur Ion Assisted Deposition willkommen und helfen den Horizont zu erweitern.

... mehr zu:
»FLUX »Wellenlänge

Initiiert wurde dieser Wissens- und Ideenfluss durch PhotonicNet. Das niedersächsische Kompetenznetz für Optische Technologien hatte im Dezember 2001 zu einem bundesweiten Forum über Fertigungsanforderungen bei der Nutzung von Lichtintensitäten unter 190 nm bis in den EUV-Bereich eingeladen. Im April 2002 folgte ein erstes Treffen des Arbeitskreises, im August dann die Verschmelzung mit dem hessischen Pendant von Optence e.V. zum gemeinsamen Arbeitskreis UV/VUV.

Seither sind viele konstante Kontakte gewachsen, die mit der Zeit eine hohe Qualität gewonnen haben: "Im Kreis herrscht manchmal eine richtig familiäre Atmosphäre. Das gegenseitige Vertrauen ist sehr gewachsen und wer ein Problem hat, der greift heute viel schneller mal eben zum Telefon", beschreibt Werner Riggers das Miteinander von Wissenschaftlern und Industrievertretern.

Der Physiker ist F&E-Manager der Firma Laseroptik in Garbsen und koordiniert den Arbeitskreis bereits seit der Anfangsphase mit viel Engagement. Er lobt das intensive und produktive Klima der Treffen. Damit die Teilnehmer zusätzlich Einblick in andere Unternehmen bzw. Forschungseinrichtungen gewinnen können, lädt er an wechselnde Veranstaltungsorte ein. Hier werden auch junge Wissenschaftler und Mitarbeiter der gastgebenden Institutionen und Firmen integriert.

Der Erfolg des Arbeitskreises lässt sich nach Riggers vor allem an den vielfältigen Geschäftsbeziehungen und bilateralen Projekten ablesen, die mit der Zeit zwischen den Akteuren entstanden sind. Laseroptik ist selbst z.B. an FLUX beteiligt, einem BMBF-geförderten Verbundprojekt. Ausgangspunkt für FLUX war eine Anfrage im Arbeitskreis zum möglichen Einfluss der Reflektion durch die Fluoreszenz von Bedampfungsmaterialien auf den Oberflächen-Bearbeitungsprozess. Weitere ähnliche Fragestellungen kamen dazu.

Seit Anfang 2006 arbeiten 10 Partner - die meisten Akteure des Arbeitskreises - unter der Koordination von Coherent gemeinsam an der Thematik "Fluoridische Laserkomponenten für den UV-X Spektralbereich". "Das Projekt FLUX arbeitet sehr effizient, mit hervorragender Organisation und toller Beteiligung der Partner. Da gibt das Unternehmen LASEROPTIK sehr gerne Geld dazu", kommentiert Werner Riggers die bisherige Zusammenarbeit. Am 13. Februar trifft man sich zur Statussitzung am Laser Zentrum Hannover - einem der wissenschaftlichen Partner - um erste Ergebnisse auszutauschen.

Zum FLUX-Projekt:
Oberstes Ziel von FLUX ist die Erhöhung der Stabilität und damit der Lebensdauer von Laseroptiken bei 193nm. Erreichen möchte man das auf verschiedenen Ebenen: So wird an verbesserten Substrat- und Schichtmaterialien gearbeitet, Beschichtungsprozesse sowie die Charakterisierung von Substraten, Oberflächen und Schichten für die kurzen Wellenlängen optimiert. Im ersten Jahr hat das Projektteam aus Beschichtern, Laserherstellern und - Anwendern viele Wochen harte Arbeit in umfassende Lebensdauertests gesteckt. Die daraus gewonnenen Erkenntnisse fließen jetzt in eine detaillierte Untersuchung der Beschichtungsmechanismen. Die bisherigen Ergebnisse stimmen optimistisch, dass eine erheblich höhere Lebensdauer und damit auch eine deutliche Kostensenkung im Bereich der DUV/VUV-Anwendungen erreichbar sein werden.
Weitere Informationen zum Arbeitskreis erteilt:
Dipl. Phys. Werner Riggers
LASEROPTIK GmbH
Gneisenaustr. 14
30826 Garbsen
Tel.: 05131 / 4597 21
Mail: wriggers@laseroptik.de

Anja Nieselt-Achilles | idw
Weitere Informationen:
http://www.photonicnet.de

Weitere Berichte zu: FLUX Wellenlänge

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie