Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher: Tarnkappe für Audiowellen möglich

14.01.2008
Spezialmaterial schützt U-Boote vor Sonar und optimiert Konzerthallen

US-Forschern ist der theoretische Nachweis geglückt, dass mithilfe bestimmter Materialien der Bau einer Tarnkappe für akustische Signale möglich ist. Knackpunkt der Berechnungen von Steven Cummer von der Duke University im US-Bundesstaat North Carolina und seinem Team war die Dreidimensionalität. Bislang wiesen die Berechnungen der Forscher darauf hin, dass eine Tarnkappe für Audiowellen nur im zweidimensionalen Bereich möglich ist. Zumindest in der Theorie ist eine Rundum-Tarnung vor akustischen Signalen nun möglich.

"Wir haben ein Material gefunden, das ein Loch im Raum öffnet und Objekte darin für Audiosignale unsichtbar macht", erläutert Cummer. Akustische Wellen, die auf das versteckte Objekt treffen, werden durch ein sogenanntes Metamaterial um das Objekt herum geleitet und tauchen auf der anderen Seite ohne jede Veränderung wieder auf. Das Team um Cummer konnte bereits 2006 nachweisen, dass es mithilfe eines speziellen Materials möglich ist, Objekte vor Mikrowellen zu verstecken. Wenige Monate später konnten die Forscher bereits einen funktionierenden Prototypen demonstrieren (pressetext berichtete: http://pte.at/pte.mc?pte=061020017 ).

Die Materialien zum Bau einer Tarnkappe für Soundsignale kommen jedoch im Gegensatz zu jenen für Mikrowellen nicht natürlich vor, sondern müssten künstlich hergestellt werden. Sollte dies gelingen, so könnten damit U-Boote vor feindlichem Sonar versteckt werden. Des weiteren könnte mit dem Material die Akustik in Konzerthallen optimiert werden, indem störende Objekte einfach vor dem Schall versteckt werden. "Damit ist es uns möglich, das akustische Aussehen eines Objekts völlig vom physischen Erscheinen zu entkoppeln", meint Cummer.

... mehr zu:
»Audiowelle »Mikrowelle »Tarnkappe »Welle

Der theoretische Nachweis der Funktion lässt die Forscher auf weitere Erfolge bei der Beeinflussung von Wellen hoffen. Nachdem der praktische Nachweis bei Mikrowellen bereits gelungen ist und nun auch Soundwellen unverändert abgelenkt werden können, gehen die Wissenschaftler davon aus, dass prinzipiell für jede Art Welle eine Tarnung gefunden werden kann. Das inkludiert laut Cummer auch seismische Wellen und Wellen an der Meeresoberfläche.

Andreas List | pressetext.austria
Weitere Informationen:
http://www.duke.edu

Weitere Berichte zu: Audiowelle Mikrowelle Tarnkappe Welle

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie