Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

2K-Dosier- und Mischanlagen für die Silikonverarbeitung im Formenbau

16.11.2006
Für Formen- und Modellbauer ist hochmolekulares Silikonharz heute ein unverzichtbarer Werkstoff.

Dessen Verarbeitung übernehmen hoch automatisierte Dosier- und Mischanlagen, berichtet das Ingenieurbüro Tartler.

Das Anwendungsspektrum technischer Silikone ist breit gefächert. Vor allem im Formen- und Modellbau spielen Silikon-Werkstoffe heute eine Hauptrolle. Als maßgebendes Kriterium für die wirtschaftliche und sichere Verarbeitung der Silikone gilt dabei das exakte Zusammenführen der Komponenten Harz und Härter. Diese Aufgabe übernehmen die modular konzipierten und hoch automatisierten Dosier- und Mischanlagen.

Im Formen- und Modellbau erfordert der Einsatz von Silikonharzen absolut präzise Mischungsverhältnisse. Der hessische Anlagenbauer Tartler entwickelt, konstruiert und montiert daher nach eigenen Angaben Zwei-Komponenten-Dosier- und Mischanlagen, die – basierend auf der Basistechnologie – in den meisten Fällen systemoptimiert und kundenorientiert ausgeführt sind. Das heißt, es entstehen Anlagen, die auf den jeweiligen Anwendungsfall maßgeschneidert sind.

Eine typische und inzwischen vielfach bewährte Anlage für solcherlei Aufgaben ist die Tardosil 200. Sie ermöglicht Mischungsverhältnisse von 100:5 bis 100:25 und eignet sich daher (je nach Ausführung) zur Herstellung flüssiger oder hochviskoser Silikone. Die Anlage leistet einen stufenlosen Ausstoß von 0,5 bis 5 Liter pro Minute. Das Harz wird aus einem Blechfass (200-Liter) bezogen, niederviskose Härter kommen aus einem speziellen Druckbehälter.

Dabei realisiert Tartler nach eigenen Angaben auch Anlagen für extreme Anforderungen – etwa zur Verarbeitung hochpastöser Harzkomponenten (120.000 mPas) oder wasserdünner Härterkomponenten. Zudem passt der hessische Hersteller seine Anlagen in der Dimensionierung den Produktionsbedingungen im Formen- und Werkzeugbau an.

Ein wichtiges Qualitätsmerkmal der Anlagen ist der rotierende Statikmischer mit Drehzahl-Regelung. Er lässt sich aufgrund seiner Bauweise universell als Handmischkopf oder in automatisierten Systemlösungen mit Roboter- und CNC-Technik verwenden. Der rotierende Statikmischer garantiert, dass die Silikonharze optimal gemischt werden und sich in der gewünschten Dosierung exakt auftragen lassen.

Da die Mischelemente bis in die vordere Spitze des Mischrohrs wirken, werden Toträume bei der Materialverarbeitung vermieden. Ein Vormischer am Ventilausgang sorgt zusätzlich für verzögerungsfreies Mischen. Diese Faktoren sichern entscheidend eine kontinuierlich hohe Qualität im automatisierten Dauerbetrieb.

Reinhold Schäfer | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de
http://www.tartler.com

Weitere Berichte zu: Mischanlage Mischungsverhältniss Silikonharz

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flexible Fertigung von Elektromotoren für Fahrzeuge
06.09.2017 | Karlsruher Institut für Technologie

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie