Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innovation für die Chip-Produktion

03.07.2006
Universität Jena und Magdeburger Firma verbessern Komponente der Halbleiterfertigung

Groß wie eine Pizza sind die Silizium-Wafer, auf denen heute Chips produziert werden. Doch anders als Pizzen müssen die Wafer fast absolut eben sein. Befindet sich bei der Pizza der Belag geschichtet auf dem Teig, so verlaufen die Kontakte zwischen den Halbleitern im "Wafer-Teig". Diese Vernetzung in der "Silizium-Pizza" hat derzeit im Durchschnitt eine Strukturbreite von 90 Nanometern (nm). Das ist im Vergleich zu einem Meter so klein, wie ein Völkerball neben der Erde. Wird es wesentlich unebener, ist ein fertig prozessierter 300 mm-Wafer, der etwa so viel wie ein Porsche kostet, nicht mehr zu gebrauchen. Derzeit ist die Ausbeute bei dieser Produktionslinie noch relativ niedrig.


Der neu entwickelte 300 mm-Wafer-Chuck. Foto: IGAM

Materialwissenschaftler der Universität Jena haben in den letzten vier Jahren die Magdeburger Firma IGAM dabei unterstützt, die Wafer-Fertigung zu verbessern. Dort sind nach fast siebenjähriger Forschungs- und Entwicklungsphase aktiv verstellbare Wafer-Halter, so genannte Chucks, entstanden.

Die "Piezo-Chucks" seiner Firma, betont IGAM-Geschäftsführer Dr. Christian-Toralf Weber, ermöglichen zum einen "mehr Flexibilität in der Produktion". Außerdem sollen bis 2010 die Strukturbreiten auf unter 50 nm gesenkt - bei einer Toleranz von 10 nm - und die Ausschussrate reduziert werden.

Mittel für diese deutliche Qualitätsverbesserung und Kostenersparnis sind die neu entwickelten und seit 2002 gemeinsam mit der Universität Jena patentierten Piezo-Chucks, die vor kurzem mit dem 2. Platz beim 2006er Innovationspreis Sachsen-Anhalts ausgezeichnet wurden und vom 10. bis 14. Juli auf der renommierten Halbleitermesse "Semicon West" in San Francisco (USA) ausgestellt werden.

Für die Herstellung von Chips aus Wafern wird eine spezielle Poliertechnologie angewandt. Dieses hochkomplexe Abtragsverhalten, das durch Materialunterschiede, lokale Verformungen und Polierdrücke beeinflusst wird, kann durch den Piezo-Chuck stabilisiert und verfeinert werden. Denn dank seiner individuellen Reaktionsfähigkeit kann gezielt Druck auf den Wafer ausgeübt und im Nanometerbereich justiert werden. Dabei ist die Elektronik mit Prozessor und Datenübertragungsmodul auf dem Polierwerkzeug angebracht.

IGAM setzt in seinem Chuck Piezokeramik-Aktoren ein: 39 Stück bei einem 300 mm-Waferchuck. Diese können frei angesteuert und einzeln durch Strom verformt werden, um die Verformung des Wafers zielgerichtet zu beeinflussen.

Dieses Kernstück der Magdeburger Innovation ist im Institut für Materialwissenschaft und Werkstofftechnologie der Universität Jena getestet und weiterentwickelt worden. Das Team um Projektleiter Dr. Volker Herold konnte für die komplizierte Messung der Druckverteilung zwischen Wafer und Poliertuch auf die speziellen Messgeräte und Werkzeugmaschinen des Instituts zur Präzisionsbearbeitung von Oberflächen zurückgreifen - und auf Erfahrung. Das und das "hier vorhandene breite Anwendungswissen" in Optik, Mess- und Fertigungstechnik war für Weber ein wichtiger Grund, die Jenaer Universität als Partner zu gewinnen.

Bei diesem Entwicklungsprojekt stand auch Herolds Team vor neuen Herausforderungen: Wie messe ich die Oberflächenform des Wafer-Chucks unter Betriebsbedingungen, da die Oberfläche ja nicht frei zugänglich ist? Und wie justiert man das System? waren nur zwei von zahlreichen Fragen, auf die die Jenaer Materialexperten nun Antworten haben - und nebenbei ein spezielles berührungsloses Messverfahren entwickelten. "Die Präzisionsbearbeitung und die Bewertung der Geometrie waren der maßgebliche Anteil, der in Jena geleistet wurde", unterstreicht Weber.

Nun geht das Gerät in Dresden in die Erprobungsphase, um eine industrienahe Produktion zu testen. Doch während der "Prototyp" nun seinen Industrie-Test durchläuft und auf den Serieneinsatz hofft, haben IGAM und die Jenaer Materialwissenschaftler inzwischen eine komplette Reihe von Wafer-Chucks entwickelt. Auch wenn sich zukünftige Entwicklungen auf 300 mm-Wafer konzentrieren, so haben die kleineren Dimensionen doch noch eine große wirtschaftliche Bedeutung. Dafür können die Partner mittlerweile auch Chucks für 150 mm-, 200 mm- und 300 mm-Wafer zur Verfügung stellen.

Flexibilität und Auswahl haben halt große wirtschaftliche Bedeutung: in der Chip-Fertigung wie beim (Pizza-)Essen.

Kontakt:
Dr. Volker Herold
Institut für Materialwissenschaft und Werkstofftechnologie der Universität Jena
Löbdergraben 32, 07743 Jena
Tel.: 03641 / 947753
E-Mail: volker.herold@uni-jena.de
Dr. Christian-Toralf Weber
IGAM - Ingenieurgesellschaft für angewandte Mechanik mbH
Steinfeldstr. 3-5, 39179 Barleben/Magdeburg
Tel.: 039203 / 898980
E-Mail: weber@igam-mbh.de

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Materialwissenschaft Piezo-Chuck

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flexible Fertigung von Elektromotoren für Fahrzeuge
06.09.2017 | Karlsruher Institut für Technologie

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie