Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stabilität skyrmionischer Bits

14.10.2015

Skyrmionen gelten gegenwärtig als heiße Kandidaten für Informationsbits in zukünftigen digitalen magnetischen Speichermedien. Sie besitzen sehr viel versprechende Eigenschaften und können wenige Nanometer groß sein. Wissenschaftler der Universität Hamburg haben nun die Lebensdauern von solchen Strukturen eingehend untersucht um die Stabilitätsmechanismen zu ergründen und für potentielle Datenspeicher maßschneidern zu können.

Ein zentraler Aspekt unserer digitalisierten Welt ist die Speicherung von einer immensen Menge an Daten. Es gibt aktuell verschiedene Methoden dieses zu bewerkstelligen, wobei eine davon auf der Verwendung von so genannten kollinearen magnetischen Zellen basiert.


Die Konfigurationen eines magnetischen Skyrmions auf der linken Seite und eines Ferromagneten auf der rechten Seite. Die Kegel geben die Ausrichtung der lokalisierten atomaren Magnete an. Das Skyrmion besteht aus einer geringen Anzahl an Atomen und besitzt damit einen Durchmesser von nur wenigen Nanometern. Forscher der Universität Hamburg haben das spontane Schalten zwischen den beiden Zuständen, welche als Informationsbits in zukünftigen Speichermedien dienen könnten, untersucht.

(Bild: J. Hagemeister, Universität Hamburg)

In diesen Zellen sind alle atomaren Magnete gleich ausgerichtet und können prinzipiell in zwei verschiedene Richtungen zeigen. Eine solche Zelle kann damit zwei verschiedene Zustände haben und bildet auf diese Weise ein Informationsbit, welches der elementare Baustein eines jeden digitalen Speichermediums ist. In einem magnetischen Datenspeicher wie zum Beispiel der herkömmlichen Festplatte werden viele dieser Zellen auf einer magnetischen Scheibe aneinander gereiht.

Um in der Zukunft das Bedürfnis nach Speichermedien mit noch größeren Kapazitäten befriedigen zu können, müssen die Speicherzellen weiter miniaturisiert werden.

Mit den herkömmlichen magnetischen Speichermedien ist dies nur noch begrenzt möglich, da es eine minimal mögliche Größe gibt, die durch das sogenannte paramagnetische Limit gegeben ist. Dieses liegt daran, dass die Zellen unterhalb dieser Größe thermisch instabil werden und spontan ihren Zustand ändern, wodurch die Information verloren gehen würde.

Es bedarf daher neuer Wege um die Miniaturisierung voran zu bringen. In diesem Zusammenhang hat in den letzten Jahren insbesondere die experimentelle Entdeckung einer nichtkollinearen Struktur, das magnetische Skyrmion, von sich reden gemacht.

Im Skyrmion sind die atomaren Magnete nicht gleich ausgerichtet, sondern bilden einen magnetischen Wirbel bzw. anschaulich gesprochen einen Knoten. Diese Skyrmion-Knoten haben sehr viel versprechende Eigenschaften für neuartige Speichermedien, in denen man zwischen der Skyrmionstruktur („1“) und einer kollinearen ferromagnetischen Struktur („0“), in der alle atomaren Momente gleich ausgerichtet sind, schalten würde.

Wie das Online-Fachjournal „Nature Communication“ am 14. Oktober 2015 berichtete, wurde von Wissenschaftlern der Universität Hamburg die Stabilität einzelner Skyrmionen als Funktion der Temperatur und eines stabilisierenden äußeren Magnetfeldes erforscht. Durch das Justieren der Magnetfeldstärke kann die Lebensdauer der Skyrmionstruktur gezielt beeinflusst werden. Es stellte sich bei den Untersuchungen heraus, dass sich die beiden Zustände „0“ (Ferromagnet) und „1“ (Skyrmion) hinsichtlich ihrer Stabilitätseigenschaften sehr unterschiedlich verhalten.

„Man kann sich zur Veranschaulichung einen Hund vorstellen, der zwischen den zwei Tälern „Ferromagnet“ und „Skyrmion“ hin und her läuft, wobei er jedes Mal einen Berg überwinden muss. Das Tal „Ferromagnet“ liegt niedriger als das Tal „Skyrmion“ und der Hund ist hier ausgeruht und bewegungsfreudig. Im höher gelegenen Tal „Skyrmion“ ist der Hund dagegen erschöpft und macht sich nur ungern wieder auf zurück in das Tal „Ferromagnet“." erklärt Julian Hagemeister, Doktorand in der Arbeitsgruppe von Prof. Roland Wiesendanger.

"Unsere Untersuchungen haben gezeigt, dass solche Skyrmion-Knoten von einer ferromagnetischen Oberfläche nur schwierig entfernt werden können und gerade diese Eigenschaft macht die Skyrmionen so wertvoll für die Anwendung in zukünftigen Speichermedien." erläutert Dr. Elena Vedmedenko.

Die in Hamburg gewonnenen Erkenntnisse werden möglicherweise in der Zukunft dazu beitragen können, die Lebensdauer und Schalteigenschaften von Skyrmionen in geeigneten Materialien präzise zu kontrollieren, was die Entwicklung völlig neuartiger Datenspeicher mit gigantischer Speicherkapazität ermöglichen könnte.

Weitere Informationen:
Heiko Fuchs
Sonderforschungsbereich 668
Universität Hamburg
Jungiusstr. 9A, 20355 Hamburg
Tel.: (0 40) 4 28 38 - 69 59
Fax: (0 40) 4 28 38 - 24 09
E-Mail: hfuchs@physnet.uni-hamburg.de

Weitere Informationen:

http://www.sfb668.de
http://www.nanoscience.de

Heiko Fuchs | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Deep Learning und KI in der Motorenentwicklung – IAV und DFKI eröffnen gemeinsames Forschungslabor
23.01.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder
19.01.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics