Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Europäisches Forschungskonsortium für Transistoren der nächsten Generation

21.09.2001


Grenzfläche zwischen einer Schicht aus Bleizirkonat-Titanat (oben) und einem Silizium-Wafer (unten) in einer Nanostruktur von weniger als 100 nm Kantenlänge ( Transmissionselektronenmikroskop ). Foto: Max-Planck-Institut für Mikrostrukturphysik


Die TU Clausthal und das Max-Planck-Institut für Mikrostrukturphysik beteiligen sich mit sechs weiteren Partnern an der Entwicklung neuer Werkstoffe für die weitere Miniaturisierung von Transistoren. Das europäische Forschungskonsortium INVEST will mit Hilfe neuer Materialien die technologischen Schranken für eine weitere Miniaturisierung von Halbleiterbauelementen überwinden. Das Projekt startete im Juli 2001 und wird im fünften Rahmenprogramm der Europäischen Kommission zur Informationsgesellschaft gefördert. INVEST (Integration of very high-k dielectrics with silicon CMOS technology) steht für "Integration dielektrischer Materialien mit einer hohen Dielektrizitätskonstante in die Silizium-CMOS(Complementary Metal-Oxide Semiconductor)-Technologie", die dominierende Herstellungstechnik für Mikroprozessoren.

Ein Transistor gleicht einem einfachen Ventil oder Schalter, bei dem mit einer angelegten Spannung der Strom ein- und ausgeschaltet werden kann. Die Spannung erzeugt auf beiden Seiten einer isolierenden Schicht Ladungsträger, die für das Fließen des Stroms benötigt werden. Die fort-schreitende Miniaturisierung elektronischer Bauelemente ermöglicht immer höhere Prozessorgeschwindigkeiten und einen geringeren Stromverbrauch. Gleichzeitig sinken die Herstellungskosten erheblich. Doch Größe und Leistungsmerkmale eines Transistors hängen in einem Halbleiterbauelement ganz wesentlich von der sehr dünnen elektrisch isolierenden Schicht im Transistor, dem so genannten Gatteroxid, ab. Seit etwa drei Jahrzehnten wird dafür Siliziumdioxid eingesetzt.

Mit zunehmender Miniaturisierung der Transistoren wird auch die Isolierschicht immer dünner. Ist die Schicht zu dick, entsteht nicht mehr die erforderliche Anzahl von Ladungsträgern und nach dem Einschalten des Transistors fließt kein ausreichend starker Strom. Wenn die Schicht eine Dicke von nur noch wenigen Atomlagen hat, verliert sie ihre isolierenden Eigenschaften, sodass Leckströme das präzise Schalten des Transistors verhindern.

Diese Probleme treten mit dem herkömmlichen Werkstoff Siliziumdioxid auf und sollen durch den Einsatz neuer isolierender Materialien, die eine höhere Dielektrizitätskonstante aufweisen, gelöst werden. Diese Materialien können in dickeren Schichten eingesetzt werden und erzeugen dennoch genügend Ladungsträger beim Einschalten des Transistors.

Im Mittelpunkt des INVEST-Projekts steht deshalb die Einführung neuer Metalloxide mit einer relativ hohen Dielektrizitätskonstanten "k" (größer als 20) als Gatteroxid. Damit produzierte Transistoren sollen trotz ihres relativ dicken Gatteroxids (3-10 nm) die Leistungsmerkmale von Bauelementen aufweisen, die auf der Basis von Siliziumdioxid nur mit ultradünnen Schichten von 2 nm erzielt werden könnten.

Die Wissenschaftler von INVEST gehen davon aus, dass die neuen Metalloxide es erlauben, die seitlichen Ausdehnung der Transistoren von gegenwärtig 130 bis auf 50-100 Nanometer zu reduzieren. Erste Resultate des INVEST Konsortiums sind bereits viel versprechend. Doch bis die neuen Materialien in dem hoch entwickelten und optimierten Herstellungsprozess für Mikroprozessoren eingesetzt werden, sind noch viele wissenschaftliche und technische Herausforderungen zu bewältigen.

Das INVEST Projekt wird sich auseinandersetzen mit den Eigenschaften der neuen Materialien, der Qualität der Grenzflächen zur Isolierschicht, den Anforderungen an die Herstellungstechnik, den Leistungsmerkmalen und der Lebensdauer der Transistoren sowie mit der Integration und Verträglichkeit zu der heute vorherrschenden CMOS Herstellungstechnologie.

Um komplexe Metalloxide als Gatteroxide direkt auf Silizium aufwachsen zu lassen, setzt INVEST auf die so genannte Molekularstrahlepitaxie (MBE). Diese ermöglicht es, Materialien gewissermaßen Atomlage für Atomlage aufzubauen. Konkret soll die Molekularstrahltechnologie für neue Gatteroxide bei der Herstellung von 20 cm großen Wafern eingesetzt werden. Wafer sind Siliziumscheiben, die als Trägermaterial für integrierte Schaltkreise (Chips) dienen. Sie können eine Vielzahl von Chips aufnehmen. Erst nach deren Funktionsprüfung werden die einzelnen Chips dann vom Wafer abgetrennt.

Die Molekularstrahlepitaxie wird heute bereits zur Herstellung von "III-V Halbleitern" wie zum Beispiel Galliumarsenid eingesetzt. Das Team von INVEST hofft, diese Methode nun auch in den komplizierten Herstellungsprozess von Halbleiterbauelementen auf Siliziumbasis einführen zu können. Innerhalb von zwei Jahren sollen dafür geeignete Materialien identifiziert sein. Nach drei Jahren will man so viele Erfahrungen mit den neuen Gatteroxide gesammelt haben, dass sie nach 2005 eingesetzt werden können. INVEST soll damit die weltweite Vorreiterrolle Europas bei MBE-Geräten stärken und die Grundlagen für eine neue Generation von Herstellungsgeräten für Oxidfilme legen.

Die Abteilung von Prof. Blöchl an der Technischen Universität Clausthal beteiligt sich an dem Projekt mit ab-initio Simulationen des Materialwachstums sowie der Bindungsverhältnisse und der Atomstruktur in den neuen Materialien. Die Mitarbeiter um Prof. Gösele vom Hallenser Max-Planck-Institut für Mikrostrukturphysik bringen ihre Kompetenz in der Transmissionselektronenmikroskopie und der elektrischen Messtechnik ein, mit der die Qualität neuartiger Oxid-Silizium-Grenzflächen detailliert untersucht werden soll.

Weitere Mitglieder des Forschungskonsortiums sind das IBM Forschungslabor Zürich in der Schweiz, die Philips AG, vertreten mit ihrer Forschungseinrichtung in Leuven, Belgien, zwei Ultrahochvakuumkomponentenhersteller (RIBER S.A, Frankreich, und Oxford Applied Research Ltd., Großbritannien), ein unabhängiges Forschungszentrum, das sich auf die Entwicklung mikroelektronischer Prozesslinien spezialisiert hat (Interuniversitair Micro-Elektronica Centrum, Belgien), sowie zwei weitere akademischen Forschungseinrichtungen auf dem Gebiet der Material- und Ingenieurwissenschaften, das Nationale Forschungszentrum "Demokritos", Griechenland, und das Nationale Institut für Festkörperphysik, Italien.

Weitere Informationen:

Prof. Dr. Peter E. Blöchl
Institut für Theoretische Physik
Technische Universität Clausthal
Leibnizstr. 10
38678 Clausthal Zellerfeld
Tel: 0 53 23 / 72 - 20 21
Fax: 0 53 23 / 72 - 31 16
E-Mail: Peter.Bloechl@tu-clausthal.de

Dr. Marin Alexe
Max-Planck-Institut für Mikrostrukturphysik
Weinberg 2
06120 Halle/Saale
Tel: 03 45 / 55 82 - 7 05
Fax: 03 45 / 55 11 - 2 23
E-Mail: malexe@mpi-halle.de

Dr. Athanasios Dimoulas, Projectmanager INVEST
Demokritos
P.O. Box 60228
EL-15310 Athen
Griechenland
Tel: 0030-1/6503340
Fax: 0030-1/6519430
E-Mail: dimoulas@ims.demokritos.gr

Jochen Brinkmann | idw
Weitere Informationen:
http://www.pt.tu-clausthal.de/atp/
http://www.mpi-halle.de/

Weitere Berichte zu: Forschungskonsortium Gatteroxid Invest Miniaturisierung Schicht Transistor

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Ergonomie am Arbeitsplatz: Kamera erkennt ungesunde Bewegungen
24.04.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht TU Ilmenau entwickelt Chiptechnologie von morgen
20.04.2017 | Technische Universität Ilmenau

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungsnachrichten

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungsnachrichten

Auf dem Gipfel der Evolution – Flechten bei der Artbildung zugeschaut

27.04.2017 | Biowissenschaften Chemie