Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Supercomputer zum Flohmarktpreis - Chemnitzer Selbstbaurechner gehört zu den schnellsten Europas

25.07.2000


Wissenschaftler der Chemnitzer Uni testen seit heute einen Computer der Superlative. Der CLiC (Chemnitzer Linux Cluster) genannte Rechner ist der leistungsfähigste in den neuen Bundesländern und einer der schnellsten Deutschlands und Europas. Der Rechner verfügt über einen Speicher von 264 Gigabyte, die Festplatten fassen mehr als zehn Terabyte an Daten. CLiC kann in einer einzigen Sekunde mehr als 100 Milliarden Berechnungen durchführen. Das Besondere daran: Die Chemnitzer Forscher haben den Rechner selbst entworfen und aus handelsüblichen Teilen gebaut, wie sie in jedem Computershop zu haben sind: Kernstück des Aufbaus sind 528PentiumIII-Prozessoren, die mit 800 MHz getaktet sind. Dadurch kostet der Rechner nur rund ein Fünftel der Summe, die eine vergleichbare Anlage einer renommierten Supercomputer-Firma kosten würde. Das Betriebssystem des neuen Hochleistungsrechners gab’s sogar gratis: Er läuft unter dem frei erhältlichen Linux. Das gilt unter Profis als wesentlich besser und vor allem absturzsicherer als das herkömmliche Windows NT.

Unter Informatikern und Mathematikern hat die Chemnitzer Uni einen guten Namen. Schon vor Jahren hat deshalb die Deutsche Forschungsgemeinschaft (DFG) hier ihren Sonderforschungsbereich 393 "Numerische Simulation auf massiv parallelen Rechnern" angesiedelt. Massiv parallele Rechner sind Computer, die statt eines einzelnen Mikroprozessors, wie er im PC enthalten ist, gleich eine Vielzahl davon besitzen. Der Vorteil solcher Parallelcomputer: Sie sind wesentlich leistungsfähiger, weil sie ein Problem in zahlreiche Einzelschritte aufteilen, die sie nicht nacheinander, sondern gleichzeitig abarbeiten.

Das erfordert aber eine spezielle Programmiertechnik, die Chemnitzer Forscher entwickeln und auch gleich auf ihren Rechnern testen. Bisher taten sie das auf einem Parsytec GC 128 PowerPlus, der mit 128 Hochleistungsprozessoren ausgerüstet ist. Als der Rechner 1994 angeschafft wurde, war er einer der stärksten Hochschulrechner Deutschlands. Doch auch an einem solchen Rechner geht die technische Entwicklung nicht spurlos vorüber, er ist mittlerweile hoffnungslos veraltet. Gleichzeitig wurden die mathematischen Probleme, bei deren Lösung der Computer helfen sollte, immer anspruchsvoller: Ein neuer Rechner musste her.

Doch ein Rechner der Leistungsklasse, wie ihn die Chemnitzer Wissenschaftler benötigen, ist teuer: Mit 12 bis 15 Millionen Mark Anschaffungskosten muss man da schon rechnen. Soviel Geld war aber beim Sparkurs von Bund und Land nicht aufzutreiben. Was also tun, wenn man nicht genug Geld hat? Das, was man an der Chemnitzer Uni immer in solchen Fällen tut: Fehlendes Geld durch den hier reichlich vorhandenen Grips ersetzen. Warum, so überlegten sich die Wissenschaftler, sollte man einen Rechner nach Maß nicht selber bauen können, aus ganz normalen Teilen, wie sie jeder Computerhändler vorrätig hat? Wie wäre es, wenn man einfach handelsübliche Personalcomputer miteinander verbindet zu einem so genannten Cluster? Intelligent miteinander verdrahtet, so die Kalkulation, würden sie mit einem Supercomputer an Schnelligkeit mithalten können. Solche Cluster wurden bereits an verschiedenen Forschungseinrichtungen rund um den Globus erprobt. Auch an der Uni Chemnitz sammelte man bereits Erfahrungen an der OSCAR-Serie, bei deren letzter Version 16 PCs miteinander verbunden wurden.

Gesagt, geplant, getan. Auch der Bund und der Freistaat Sachsen, die den neuen Supercomputer bezahlen, stimmten zu, konnten sie so doch eine Menge Geld sparen: Nur etwa zweieinhalb Millionen Mark kostet das Cluster - es leistet aber soviel wie ein fünfmal so teurer kommerzieller Rechner. Die Forscher vom Unirechenzentrum besorgten sich beim Chemnitzer PC-Hersteller MEGware Computer 528 Rechner mit einem 800-MHz-PentiumIII-Chip. Auf Tastaturen und Monitore konnte dabei verzichtet werden, die benötigen nur die beiden Server, also die Computer, die den Rechnerverbund steuern. Das Cluster verfügt über eine Speicherkapazität von 264 Gigabyte, die Festplatten können mehr als zehn Terabyte (zehn Trillionen Byte, eine Zahl mit 13 Nullen) an Zahlen und Daten fassen. Und das Beste daran: derartige Cluster sind skalierbar, das heißt, sie können sogar zu noch stärkeren Leistungen hin erweitert werden.

Allerdings reicht es nicht, die geballte Rechnerkraft einfach aneinander zu hängen - vielmehr sind die PCs über zwei komplizierte Hochleistungsnetzwerke miteinander verbunden, die fast soviel kosteten wie die Rechner selbst. Beide sind nach dem Fast-Ethernet-Standard aufgebaut und können pro Sekunde 100 Megabit an Daten hin- und herschaufeln. Das eine Netz ermöglicht den Zugriff auf die Rechner von der gesamten Uni aus, das andere ist für die Kommunikation der PCs untereinander und die Aufteilung der riesigen Datenmengen an die einzelnen Prozessoren zuständig.

Dennoch mussten die Wissenschaftler des Uni-Rechenzentrums beim Aufbau eine Menge Probleme lösen. So entsteht beim Betrieb eine Wärme von mehr als zehn Kilowatt, die abgeführt werden muss. Der Raum, in dem der Rechner steht, ist deshalb voll klimatisiert und hält die Temperatur bei konstant 18 Grad Celsius. Die Temperaturfrage war übrigens auch der Grund, warum sich die Chemnitzer Informatiker für Intel-Prozessoren entschieden statt für die in Dresden hergestellten Prozessoren des Wettbewerbers AMD - die entwickeln nämlich bedeutend mehr Wärme. Um die Wartung zu erleichtern, stehen die Gehäuse rückwärts auf ihren Regalen - schön sieht der Rechner also nicht gerade aus.

Dafür ist er aber um so leistungsfähiger: Zweimal im Jahr, im Juni und im November, erstellen die Unis von Mannheim und Tennessee eine Liste der 500 stärksten Rechner der Welt (im Internet unter http://www.top500.org/). Um den Rang im Reigen der Supercomputer festzustellen, wurde eigens der "Linpack Benchmark Test" entwickelt. Dabei müssen die Computer eine Reihe von Gleichungen aus der Linearen Algebra lösen. "Da werden wir im November wohl irgendwo zwischen Platz 100 und 200 landen, wahrscheinlich so um Platz 120 herum", so der Diplom-Informatiker Mike Becher von der Anwendergruppe des Uni-Rechenzentrums. Damit wäre der Rechner der schnellste Cluster-Computer in Europa und der zweitschnellste der Welt - nur ein Selbstbaurechner aus den USA, der CPlant vom Sandia National Laboratory ist noch schneller. Beim Sandia steht auch der weltstärkste Rechner überhaupt, ein Intel ASCI Red. Unter allen in Deutschland aufgestellten Computern könnte CLiC sogar mit Platz 15 oder 16 rechnen, in Europa käme er vermutlich unter die Top 50. Und der leistungsstärkste Rechner in den neuen Bundesländern wäre er ohnehin - das war auch schon mit dem alten Parsytec so, der im November 1995 weltweit Platz 214 erreichte, dann aber, dem technischen Fortschritt folgend, nach zwei Jahren unter die 500er-Marke fiel.

Bleibt nur noch eine Frage zu klären: Wozu, zum Teufel, sollen 100 Milliarden Rechenschritte pro Sekunde gut sein? Wer braucht derartig hohe Rechenleistungen? Auch darauf weiß Mike Becher eine Antwort: "Mit dem Computer kann man zum Beispiel Programme entwickeln, die ganze Spielfilme bearbeiten - da müssen immerhin 25 Bilder pro Sekunde berechnet werden, und dass bei zwei Stunden Länge. So etwas ist allemal billiger als aufwendige Trickaufnahmen, wie sie bisher bei großen Hollywood-Filmen angewandt werden." Aber auch für handfestere Probleme eignet sich der Rechner. So lassen sich mit ihm zum Beispiel Brandverläufe vorhersagen, die technisch-physikalisch ungeheure komplexe Vorgänge darstellen. Und auch das Abkühlen von Walzstahl lässt sich so untersuchen und gezielt verbessern, was zu - auch wirtschaftlich wichtigen - besseren Stahlsorten führt.

Übrigens: Wenn Sie wissen möchten, wie es während der Zeit des Aufbaus zuging, schauen Sie einfach mal unter der Adresse http://www.tu-chemnitz.de/urz/anwendungen/cluster/webcam/ im Internet nach. Die Wissenschaftler hatten nämlich eine Web-Kamera aufgebaut, die jede Stunde eine Aufnahme machte.

(Autor: Hubert J. Gieß)

Wichtiger Hinweis für die Medien: Ein Foto zum Text erhalten Sie über Zentralbild GmbH, Tel. 030/2852-1511 (Fotograf: dpa/Wolfgang Thieme, Funkbild-Nummer CHE-01-25. 07. 2000).

Weitere Informationen: Technische Universität Chemnitz, Universitätsrechenzentrum, Facharbeitsgruppe Anwendungen, Straße der Nationen 62, 09107 Chemnitz, Dr. Wolfgang Riedel, Telefon (03 71)5 31-14 22, E-Mail: wolfgang.riedel@hrz.tu-chemnitz.de oder Dipl.-Inform. Mike Becher, Telefon (03 71)5 31-17 25, E-Mail: mike.becher@hrz.tu-chemnitz.de

Hubert J. Gieß |

Weitere Berichte zu: CLiC Cluster Rechner Selbstbaurechner Supercomputer

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Cybersicherheit für die Bahn von morgen
24.03.2017 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht Schutz vor Angriffen dank flexibler Programmierung
22.03.2017 | FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise