Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenfortschritt bei magnetischen Speichermedien in Sicht

14.06.2000


Forschern der Universität Hamburg und des Forschungszentrums Jülich ist ein entscheidender Durchbruch bei der Analyse magnetischer Strukturen auf atomarer Skala gelungen. Wie in dem angesehenen amerikanischen Wissenschaftsmagazin "Science" (Ausgabe vom 9. Juni 2000) berichtet, konnte im Rahmen einer Zusammenarbeit der experimentellen Arbeitsgruppe von Prof. Dr. Roland Wiesendanger vom Zentrum für Mikrostrukturforschung der Universität Hamburg und der Theorie-Arbeitsgruppe von Dr. Stefan Blügel vom Forschungszentrum Jülich erstmals eine einzelne Atomlage eines speziellen mangetischen Materials, bei dem jeweils die einzelnen atomaren Elementarmagnete auf benachbarten Plätzen entgegengesetzt ausgerichtet sind, mit Hilfe eines neuen magnetisch sensitiven und atomar auflösenden Mikroskopieverfahrens direkt abgebildet werden. Damit können nun erstmals neben einzelnen Atomen und einzelnen Elektronenladungen auch die magnetischen Eigenschaften in atomaren Dimensionen sichtbar gemacht werden.

Obgleich dies zunächst einen fundamentalen Beitrag im Bereich der Grundlagenforschung darstellt, zeichnen sich bereits heute enorme Anwendungsziele ab, wenn es gelingt, die magnetischen Strukturen auch auf dieser atomaren Skala gezielt zu verändern. Dann könnte eine vollkommen neue Generation magnetischer Speichermedien verfügbar werden, welche die Kapazität heutiger Speichermedien millionenfach übertrifft.
Grundlage des neuen magnetisch-sensitiven Abbildungsverfahrens stellt das Rastertunnelmikroskop dar, das 1982 von Prof. Gerd Binnig und Dr. Heinrich Rohrer (Nobelpreis für Physik 1986) am IBM Forschungslaboratorium in Zürich entwickelt wurde. Dieses nutzt das Tunneln von Elektronen zwischen einer atomar scharfen Metallspitze und einer leitfähigen Probe bei Abständen im Bereich von millionstel Millimetern, um atomare Landschaften und Elektronenverteilungen in Metallen und Halbleitern direkt zu visualisieren. Dabei werden keine Linsensysteme benötigt wie bei herkömmlichen Mikroskopen. Auch die Energie der Elektronen kann im Vergleich zur herkömmlichen Elektronenmikroskopie und zur Röntgenmikroskopie millionenfach kleiner gewählt werden und schädigt somit nicht das zu untersuchende Material.

Bereits vor zehn Jahren konnte Prof. Roland Wiesendanger - damals noch an der Universität Basel tätig - die Sensitivität dieses Mikroskopieverfahrens auf den sogenannten "Spin" (Eigendrehimpuls) der Elektronen erstmals nachweisen und auf das älteste bekannte magnetische Material (Magnetit) anwenden ("Science" 1992). Die neuen experimentellen Resultate in Hamburg bedeuten jedoch nochmals einen erheblichen Fortschritt bezüglich der Ortsauflösung und Sensitivität. Derzeit gibt es kein konkurrierendes magnetisch-sensitives Abbildungsverfahren, das eine vergleichbare Leistungsfähigkeit aufweist. Entsprechend groß ist das Interesse zahlreicher Firmen, die auf dem Gebiet der Magnetspeichertechnologie sowie der magnetischen Sensorik arbeiten.

Ziel für die Zukunft ist jedoch nicht nur die Nutzung der analytischen Möglichkeiten der neu entwickelten Technik, sondern insbesondere die Konzeption einer vollkommen neuen Generation magnetischer Datenspeicher, bei denen die einzelnen Informationseinheiten (Bits) millionenfach kleiner sind. Um dies zu erreichen, müssen die magnetischen Zustände auf atomarer Skala direkt ausgelesen werden können, was zur Zeit nur in Hamburg beherrscht wird. In enger Kooperation mit der Industrie soll nun dieses neue Speicherkonzept weiter verfolgt werden.


Die Forschungsarbeiten an der Universität Hamburg auf diesem Gebiet werden vom Bundesministerium für Bildung und Forschung (Förderprogramm Nanotechnologie), der Deutschen Forschungsgemeinschaft sowie der Deutsch-Israelischen Wissenschafts-Stiftung finanziert.

Kontakt:
Prof. Dr. Roland Wiesendanger (wiesendanger@physnet.uni-hamburg.de)

Klaus TornierA |

Weitere Berichte zu: Elektron Sensitivität Skala Speichermedien

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Layouterfassung im Flug: Drohne unterstützt bei der Fabrikplanung
19.05.2017 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht Intelligente Industrialisierung von Rechenzentren
15.05.2017 | Rittal GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten