Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroskope für den Blick auf die Speichermedien der Zukunft

18.09.2000


Im Rahmen eines EU-Projekts arbeiten der Experimentalphysiker Prof. Uwe Hartmann und seine Arbeitsgruppe an Mikroskopie-Verfahren, die den Fortschritt in Sachen höhere Speicherkapazität von Computer-Festplatten
vorantreiben sollen.

Die Festplatten der Zukunft werden um ein vielfaches mehr Information speichern können als heute. Entwickler aus aller Welt arbeiten derzeit daran, die Speicherkapazität zu erhöhen, d.h. mehr Daten auf immer kleinerer Fläche unterzubringen. Der Haken: In dieser Größenordnung sehen die Wissenschaftler nicht, was sie tun - ein nicht zu unterschätzendes Handikap; zumal mit immer höherer Speicherdichte immer kleinere Maßstäbe gesetzt werden sollen. Um eine Vorstellung zu geben: Bereits heute spielt sich die Datenspeicherung im Bereich von etwa einem halben Mikrometer ab - also halb so groß wie ein tausendstel Millimeter.
Um einen prüfenden Blick auf die Oberfläche der kommenden Festplatten-Generationen zu ermöglichen, haben sich im Rahmen eines EU-Projektes drei Universitäten mit drei Firmen zusammengeschlossen: das Trinity College Dublin (Irland), die Universität Nijmwegen (Holland), die Universität des Saarlandes, das Europäische Forschungszentrum der US-Firma Seagate (Nordirland) und die deutschen Unternehmen Triple-O und Nanosensors.
Aus der Saar-Universität ist der Lehrstuhl des Experimentalphysikers und Nanotechnologie-Experten Prof. Uwe Hartmann beteiligt. Die Aufgabe der Arbeitsgruppe um Prof. Hartmann und Dr. Ulrich Memmert ist es, die Magnetokraftmikroskopie weiterzuentwickeln. Hartmann hatte bereits mit der Entwicklung des so genannten Raster-SQUID-Mikroskops erstmals ermöglicht, magnetische Strukturen mit bislang nicht erreichter Empfindlichkeit zu untersuchen, wofür er den Philip-Morris-Forschungspreis erhielt. Ihm und seinem Team ist es darüber hinaus kürzlich gelungen, große Fortschritte bei der Abbildung von menschlichen Chromosomen und von DNS-Molekülen zu erzielen.

Im Rahmen des EU-Projektes geht es jetzt darum, Abbildungsmethoden für die Oberfläche der zukünftigen Festplatten zu entwickeln. Von den heutigen können die Saarbrücker Forscher bereits scharfe Bilder aufnehmen.
Sie arbeiten nun an der Weiterentwicklung ihrer Methode.
Die Daten einer Festplatte sind magnetisch auf ihr abgespeichert. Durch die kleinen Magnetfelder entstehen auf der Platte Strukturen, die ähnlich wie regelmäßige Sanddünen aussehen. Wie der Tonarm eines Plattenspielers wandert die "Nadel" des Mikroskops in unvorstellbar kleinem Abstand über die Oberfläche - die Weiterentwicklung dieser "Nadel" ist eine Saarbrücker Spezialität; ihre Spitze ist 50 Nanometer, d.h. 50 millionstel Millimetern fein. Durch die Magnetfelder auf der Festplatte wird die Nadel beim darüber Gleiten angezogen und abgestoßen. Die Messdaten, die durch das Auf und Ab der Spitze gesammelt werden, werden vom Computer in eine Landschaft umgerechnet - ein genaues Abbild der Oberfläche, auf dem z.B. Beschädigungen offensichtlich werden.

Die Koordination des EU-Projektes liegt in den Händen des European Project Office der Saar-Uni.

Sie haben noch Fragen? Dann setzen Sie sich bitte in Verbindung mit
Prof. Dr. Uwe Hartmann (Tel: 0681 / 302 - 3798, email:
u.hartmann@rz.uni-sb.de
) oder Dr. Ulrich Memmert (Tel: 0681 / 302 - 4555, email: u.memmert@rz.uni-sb.de).

Weitere Informationen finden Sie im WWW:

Claudia Brettar |

Weitere Berichte zu: Experimentalphysik Festplatte Millimeter

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Analog-Digital-Umwandlung mit sehr hohen Datenraten
30.09.2016 | Technische Universität Braunschweig

nachricht Human Brain Project: Pilotsysteme für interaktiven Superrechner gestartet
28.09.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: Zielsichere Roboter im Mikromaßstab

Dank einer halbseitigen Beschichtung mit Kohlenstoff lassen sich Mikroschwimmer durch Licht antreiben und steuern

Manche Bakterien zieht es zum Licht, andere in die Dunkelheit. Den einen ermöglicht dieses phototaktische Verhalten, die Sonnenenergie möglichst effizient für...

Im Focus: Experimentalphysik - Protonenstrahlung nach explosiver Vorarbeit

LMU-Physiker haben mit Nanopartikeln und Laserlicht Protonenstrahlung produziert. Sie könnte künftig neue Wege in der Strahlungsmedizin eröffnen und bei der Tumorbekämpfung helfen.

Stark gebündeltes Licht entwickelt eine enorme Kraft. Ein Team um Professor Jörg Schreiber vom Lehrstuhl für Experimentalphysik - Medizinische Physik der LMU...

Im Focus: Der perfekte Sonnensturm

Ein geomagnetischer Sturm hat sich als Glücksfall für die Wissenschaft erwiesen. Jahrzehnte rätselte die Forschung, wie hoch energetische Partikel, die auf die Magnetosphäre der Erde treffen, wieder verschwinden. Jetzt hat Yuri Shprits vom Deutschen GeoForschungsZentrum GFZ und der Universität Potsdam mit einem internationalen Team eine Erklärung gefunden: Entscheidend für den Verlust an Teilchen ist, wie schnell die Partikel sind. Shprits: „Das hilft uns auch, Prozesse auf der Sonne, auf anderen Planeten und sogar in fernen Galaxien zu verstehen.“ Er fügt hinzu: „Die Studie wird uns überdies helfen, das ‚Weltraumwetter‘ besser vorherzusagen und damit wertvolle Satelliten zu schützen.“

Ein geomagnetischer Sturm am 17. Januar 2013 hat sich als Glücksfall für die Wissenschaft erwiesen. Der Sonnensturm ermöglichte einzigartige Beobachtungen, die...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart Glasses Experience Day

30.09.2016 | Veranstaltungen

Einzug von Industrie 4.0 und Digitalisierung im Südwesten - Innovationstag der SmartFactoryKL

30.09.2016 | Veranstaltungen

"Physics of Cancer" - Forscher diskutieren über biomechanische Eigenschaften von Krebszellen

30.09.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Smart Glasses Experience Day

30.09.2016 | Veranstaltungsnachrichten

Materialkompetenz für den Leichtbau: Fraunhofer IMWS präsentiert neue Lösungen auf der K-Messe

30.09.2016 | Messenachrichten

Vom Rollstuhl auf das Liegerad – Mit Funktioneller Elektrostimulation zum Cybathlon

30.09.2016 | Energie und Elektrotechnik