Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenlampen für die Herstellung von Halbleiterchips

16.01.2001


An der Entwicklung von speziellen Röntgenlampen tüftelt derzeit ein bundesweiter Forschungsverbund, dem auch Physiker von der Universität Würzburg angehören: Die neuartigen Lampen sollen künftig die Produktion
von Halbleiterchips ermöglichen, auf denen so viele Schalt- und Speicherelemente Platz finden wie noch nie zuvor.

Bei der Herstellung von Halbleiterchips, wie sie heute unter anderem in jedem Computer verwendet werden, ist derjenige Produzent Marktführer, der die meisten Bauelemente auf einer Oberfläche unterbringen kann. Bei der industriellen Fertigung wird zunächst ein großflächiges Muster der gewünschten Struktur hergestellt. Dieses wird dann optisch verkleinert auf ein mit Fotolack überzogenes Halbleiterscheibchen abgebildet. Nach verschiedenen solchen Belichtungs-, Aufdampf- und Ätzschritten entsteht so der vom Konstrukteur entworfene Chip.

Dabei hängt die Feinheit der erreichbaren Strukturierung von der Qualität der optischen Abbildung ab. Aus physikalischen Gründen ist die kleinstmögliche Struktur durch die Wellenlänge des verwendeten Lichts festgelegt. Daher werden für die Belichtung heutzutage Ultraviolettlaser mit den kürzestmöglichen Wellenlängen verwendet.

Zur Zeit rüsten die Chiphersteller ihre Belichtungsapparaturen auf Fluor-Laser um, die bei einer Wellenlänge von 157 Nanometern arbeiten, wobei ein Nanometer einem Milliardstel Meter entspricht. "Diese Wellenlänge erlaubt die Herstellung von etwa 100 Nanometer großen Strukturen", so der Würzburger Physiker Prof. Dr. Hansheinrich Langhoff. Anders gesagt: Auf einen Chip passen in diesem Fall ungefähr eine Milliarde Schalt- bzw. Speicherelemente.

Für die nächste Chip-Generation mit noch feineren Strukturen benötigt man Belichtungsapparaturen für noch kleinere Wellenlängen. Dabei treten laut Prof. Langhoff zwei Probleme auf: Zum einen gibt es keine Linsen für die Abbildung in diesem Wellenlängenbereich. Jedoch sei es in letzter Zeit gelungen, dielektrische Spiegel herzustellen, die in einem schmalen Wellenlängenbereich um 13 Nanometer, dem so genannten extremen Ultraviolett- oder weichen Röntgenbereich, gut reflektieren und so hochwertige optische Abbildungen ermöglichen.

Das zweite, entscheidende Problem ist die Verfügbarkeit einer intensiven Lichtquelle für die Belichtung. Da es für diese Wellenlänge keine Laser gibt, kommt nur eine Röntgenlampe mit einer extrem heißen und dichten, punktförmigen Plasmaquelle in Frage. Diese muss Eigenschaften aufweisen, wie sie etwa im Inneren der Sonne vorliegen.

Eine solche Röntgenlampe will der bundesweite Forscherverbund entwickeln. Die Aufgabe der Arbeitsgruppe von Prof. Langhoff besteht darin, das heiße Plasma in einer speziellen Hochstrom-Gasentladung zu erzeugen. Dazu wird ein Stromimpuls von rund 100.000 Ampere durch eine enge, gasgefüllte Kapillare geschickt. Die dabei auftretenden magnetischen Kräfte bewirken, dass sich der Strom zu einem dünnen, heißen Faden zusammenzieht. Wird die Kapillare mit Sauerstoff oder Xenon gefüllt, dann entsteht eine intensive Strahlung mit der gewünschten Wellenlänge von 13 Nanometern.

Das Würzburger Projekt wird vom Bundesministerium für Bildung und Forschung unterstützt. Gegen Ende des Jahres 2000 sollten die physikalischen Grundlagen soweit erarbeitet sein, dass entschieden werden kann, ob dieses Konzept gegenüber den anderen Lösungsvorschlägen Vorteile bietet. Dann kann mit der technischen Konstruktion der Lampe begonnen werden.

Prof. Langhoff: "Dabei ist die Konkurrenz mit anderen Industrienationen, vor allem den USA, gewaltig. Die Industrie rechnet damit, dass diese neuen Belichtungsmaschinen in etwa drei Jahren einsatzbereit sind. Theoretisch könnte die Zahl der Speicherelemente auf einem Chip damit noch mal um den Faktor 100 erhöht werden."

Weitere Informationen: Prof. Dr. Hansheinrich Langhoff, T (0931) 888-5739, Fax (0931) 888-4906, E-Mail:
langhoff@physik.uni-wuerzburg.de

Robert Emmerich | idw

Weitere Berichte zu: Halbleiterchip Nanometer Röntgenlampe Wellenlänge

Weitere Nachrichten aus der Kategorie Informationstechnologie:

nachricht Roboter-Navigation über die Cloud
11.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Neuer Kaba Zylinder mit Service-Funktion: Zeitlich begrenzter Zutritt für Servicepersonal
07.12.2017 | dormakaba Deutschland GmbH

Alle Nachrichten aus der Kategorie: Informationstechnologie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Alternativer Entstehungsprozess für Blutkrebs entschlüsselt

12.12.2017 | Biowissenschaften Chemie

Neue Beschichtung bei Industrieanlagen soll Emissionen senken

12.12.2017 | Materialwissenschaften

Zeigt her Eure Blätter - Gesundheitscheck für Stadtbäume

12.12.2017 | Biowissenschaften Chemie